第 3 項 – 「保護インピーダンス」の定義の理解方法

保護インピーダンス: 通常の使用時および機器の故障の可能性がある状態での電流が安全な値に制限されるように、クラス II 構造の充電部分とアクセス可能な導電部分の間に接続されたインピーダンス。 ケース1:最初のケースは、通常、アダプター駆動の製品など、低電圧電源を必要とする状況です。アダプターの出力電圧はDC12V、DC24V、またはDC5Vです。これらの低電圧部品は、変圧器の変圧と整流器電流の整流によって得られるため、一般にユーザーが触れることができます。したがって、高電圧部分と電圧部分を効果的に絶縁する必要があります。当社の一般的なスイッチング電源基板では、EMC 伝導テストを実施すると、トランスの一次側で発生した干渉が一次側と二次側の間の寄生容量を通過し、150k~30MHz の伝導性干渉が発生して二次側に到達します。ここでは、Y コンデンサを使用して干渉信号を電源に戻し、干渉を相殺するループを形成します。そうしないと、導通テストが不合格になります。ここでの Y コンデンサは保護インピーダンスを形成します。下図の赤いボックスで選択された 2 つの Y コンデンサが保護インピーダンスです。 下図はマイナスイオン発生器の回路図です。赤い四角形で選択された 2 つの抵抗は、一般的な保護インピーダンスです。 下の図のCY1とCY2は保護インピーダンスですか? 規格の定義から、保護インピーダンスは接地が存在するクラス II 構造で使用されます。ここでの接地が保護接地として定義されている場合、保護インピーダンスはクラス II 構造で使用され、ここではクラス I 構造であるため、明らかに CY1 と CY2 を保護インピーダンスとして定義できません。ここでの接地が機能接地として定義されている場合、2 つの問題があります。まず、これはクラス I 構造であるため、CY1 と CY2 は保護インピーダンスとして定義できません。次に、クラス II 構造の場合、CY1 と CY2 を保護インピーダンスとして定義でき、保護インピーダンスの関連要件を満たす必要があります。私の個人的な意見は、CY1 と CY2 は保護インピーダンスではなく、直接基礎絶縁とみなしてよいと考えています。結局のところ、回路図に示されている設計は規格に受け入れられないということでしょうか?そしてnbsp; それらが保護インピーダンスである場合、どちらが第 22.42 条「保護インピーダンスは少なくとも 2 つの別個のコンポーネントで構成されなければならない」に準拠する必要があります。 From the definition of the standard, the…

第3項「機能絶縁」の定義の見方

機能的絶縁: 電位の異なる導電性部分間の絶縁であり、機器が適切に機能するためにのみ必要です。 下の図は典型的な機能絶縁の図です。PCB の銅レール層の図に示されているように、ラベルの茶色の部分は電源活線 (電流ヒューズ間に接続されている 2 つの茶色の位置)、青色の部分です。接続は電力線の中性線であり、活線であり、中性線には 2 つの線の間に電圧差があるため、選択した銅線レールの青色の部分と選択した銅線レールの茶色の部分の間の最短距離になります。レール、つまり機能絶縁体です。実際、通常の動作では、下の写真の回路基板、銅レール上の電圧は多くの場所で同じではないため、機能絶縁の形成により、読者は動作電圧によって独自の回路分析を行うことができます。各部分。 AC 非同期モーターの一般的な巻線接続図は次の図のようになります。図のコンデンサが動作しているとき、コンデンサの両端の電圧は通常、製品の定格電圧よりも高くなります。たとえば、定格電圧が 220V の場合、動作中にマルチメータで測定されるコンデンサの両端の電圧は通常 300V を超えます。このとき、コンデンサの両端間の機能絶縁を評価する場合、300V以上の使用電圧を基準に評価する必要がありますが、実際にはコンデンサ自体の機能絶縁は一般的には可能ではありません。コンデンサの端子がコンデンサのケース内に封入されているため測定されます。測定できる箇所はコンデンサの2本のリード線の端子台です。 下図に示すように、端子台には左側に活線が接続され、右側に中性線が接続されています。赤い線の位置は機能絶縁体の沿面距離です(クリアランスもここで決定できます)。 下の図に示されているキャリパーの測定値は、PCB 上のアダプターの入力のライブ銅線と中性銅線の間の機能絶縁を表しています。 As shown in the figure below, the terminal block has the live wire connected on the left and the neutral wire connected on the right. The position of the red line is the creepage distance of the…

第 3 項 – 「強化絶縁」の定義の理解方法

強化絶縁:充電部に適用される単一絶縁。この規格で指定された条件下で二重絶縁と同等の感電に対する保護を提供します。注: 断熱材が 1 つの均質な部分であることを意味するものではありません。絶縁体は複数の層で構成される場合があり、補助絶縁体または基礎絶縁体として単独でテストすることはできません。 下の2枚の写真にあるように、左の写真は冷蔵庫の背面の写真です。左の写真は金属グリル越しに内部の基板が見えており、右の写真は内部の写真です。 PCB には充電部分があり、ユーザーがグリルに触れる可能性があります。グリルの隙間と回路基板上の充電部分の間の空気は、導電ループを形成する可能性があります。したがって、この距離は強化絶縁とのクリアランスとして決定できます。クリアランスと注意事項があるため、そして、空気ループで構成されていますが、空気ループを分離することはできず、この空気をどこでいくつかの部分に分割するかさえわかりません。ここで、2 つの点に注意する必要があります。金属グリルが接地されていない場合、グリルと回路基板の充電部分の間の空気は、強化絶縁の要件を満たす必要があります(クラス II 機器の第 8.2 項の要件に従って)。金属グリルが接地されている場合、その場合、グリルと回路基板の充電部分の間の空気は、基礎絶縁の要件のみを満たす必要があります。基礎絶縁と接地は二重の保護手段を備えたクラス I 機器であり、ユーザーは接地金属部分に触れることができるためです。 下に示されている水中ポンプは、内部に影付きの極モーターがあり、巻線が黄色の絶縁体で包まれています。水による損傷を防ぐために、モーターのステーター全体がエポキシ樹脂で包まれています。巻線を巻いた後は、基礎絶縁と補助絶縁を効果的にテストすることはできません。エポキシ樹脂を注入する前は、黄色の絶縁体が基礎絶縁体と考えられ、エポキシ樹脂は補助絶縁体と考えることができます。しかし、エポキシ樹脂をポンプハウジングに注入すると、黄色の絶縁材と非常に密着してしまうため、耐電圧試験の評価などで両者を分離して評価することができません。したがって、ポンプ巻線から外部からアクセス可能なエポキシ樹脂表面まで強化絶縁が形成されます。 The submersible pump shown below has a shaded pole motor inside, with the windings wrapped in yellow insulation. To prevent water damage, the entire motor stator is wrapped in epoxy resin. After the windings are wrapped, it is not possible…

第3項「二重絶縁」の定義の見方

二重絶縁:基礎絶縁と補助絶縁を併用した絶縁方式 次の回路基板の画像にはアニメーション効果があります。点線の右側は動作電圧 220 ~ 240V のアクセス不可能な部分であり、点線の左側は最大動作電圧 24V のアクセス可能な部分です (点線の位置の構造が正常であると仮定します)。ラインは二重絶縁または強化絶縁の要件を満たしています)。効果的な絶縁を確保するために、一般的に、点線の右側のワイヤ (赤と青の内部ワイヤ) は、左側の比較的細い内部ワイヤに触れることはできません。右側のワイヤのワイヤ シースは基礎絶縁です。これは、ワイヤ シースが充電部と直接接触しており、充電部を保護する最初の層であるためです。左側の電線の電線シースは補助絶縁としてのみ定義できますが、第 29.3 項の補助絶縁の要件を満たしているかどうかは、第 29.3 項を導入する際に分析されます。 ここで、左側の電線の電線被覆を基礎絶縁、右側の電線の電線被覆を補助絶縁とすることはできないことに注意してください。 As shown in the following two pictures(fan), the internal lead wires sheath in the left picture is basic insulation, and the bottom plate of the outer casing is additional insulation. The following circuit board picture has an…

第3項「補助絶縁」の定義の見方

補助絶縁:基礎絶縁が切れた場合に感電を防ぐために、基礎絶縁とは別に施される独立した絶縁 基礎断熱材の外側にあり、基礎断熱材から独立しており、通常はユーザーがアクセスできる断熱材。補助絶縁はその名のとおり追加的なものであり、基礎絶縁に追加する絶縁を指します。これには、この規格の基本原則、つまり二重保護の原則が関係します。いかなる危険に対しても、少なくとも 2 層または 2 セットの保護措置を講じる必要があります。いずれかの保護手段が失敗した場合でも、アプライアンスは別の保護層によって保護されます。ここでの追加絶縁の要件は、基礎絶縁が機能しなくなった場合に保護の役割を果たすことができる絶縁を考慮することです。ここでの保護は充電部の保護のみを目的としています。この規格の他の要件には、非充電部分に対する二重保護措置の要件が含まれます。 下図に示すように、基礎絶縁体の外表面(ここでは内部電線の電線被覆の外表面、またはスイッチのプラスチック材料表面と理解してください)から絶縁可能な箇所まで使用者が触れる部分(機器の底カバーや側面シェル)は、写真例から、機器の底カバーや側面シェルが補助絶縁材であると判断できます。これに対応して、サイドシェル内面に沿った内部リード線シースから外部ユーザーが触れる可能性のある場所までの沿面距離を補助絶縁とし、内部基礎絶縁からの最短直線距離と定義できます。空気を通って外部ユーザーが触れる可能性のある場所までの距離を補助絶縁クリアランスとして定義できます。ここでいうクリアランスとは、一般的にボトムシェルとサイドシェルの間の隙間を指します。

第3項「基礎断熱」の定義の見方

基本絶縁: 感電に対する基本的な保護を提供するために通電部分に適用される絶縁 一般的に言えば、充電部と直接接触する絶縁層は、一般的な絶縁材料 (PVC や ABS などのプラスチック材料など) である場合もあれば、空気または絶縁層上に形成された距離 (沿面距離) である場合もあります。断熱材の表面。ほとんどの国では、ユーザーが基礎断熱材に触れる可能性のある構造は認められていません。したがって、基礎絶縁は通常、機器の内部に配置されており、通常の動作中に触れることはできません。 下の左の写真は扇風機の底カバーの写真、右の写真は底カバーを外した写真です。右の写真の電源コード内の青と茶色のワイヤ外皮は、基本絶縁と考えることができます。同時に、黒いシェルに接続されているスイッチの白、赤、黒の線の外皮も基礎絶縁であると判断できます。ここでの充電部分は、ワイヤ内の銅芯です。また、スイッチ内の金属導体と白色シェル内面との距離により基礎絶縁性と判断できます。沿面距離の観点から見ると、スイッチ内の導体の電気は、スイッチの絶縁表面に沿って白いシェルの内面 (右の図の左の小さい角) まで伝導 (登って) します。この距離は、基礎絶縁体の沿面距離とみなしてください。電気的クリアランスの観点からは、スイッチ内部の導体の電気はファンボトムカバー内面とスイッチシェルの間の空気を介して直接伝導しており、この空気間の距離が基礎絶縁のクリアランスと判断されます。 (白いプラスチックシェルは追加絶縁と判断されます) 下図に示すように、モーターの巻線のラッカー塗装された導体は、モーターのステーターに挿入された白いスロット紙によって固定されています。巻線は規格により露出充電部として識別されます。ラッカー塗装された巻線の導体とモーターのステーターは、スロット ペーパーを介して導電ループを形成します (一般に、クラス I 機器の場合、モーター ハウジングが接地されているため、モーター ハウジングに接続されているステーターも接地されます。クラス II 機器では、モーター ハウジングとモーター ステーターは接地されていない中間金属コンポーネントです)。スロット紙の導電性は十分ではありませんが、スロット紙には微弱な電流が発生します。ここで発生する電流量はスロット紙の性能に直結します。ここでのスロット紙の材質は基礎絶縁体と判断できます。スロット ペーパーの表面は巻線の金属積層板に接続できるため、スロット ペーパーの表面上の距離は基礎絶縁体の沿面距離として決定できます。スロットペーパーの材質自体が固体絶縁の役割を果たします(固体絶縁には厚さの要件はありませんが、それでも第 13 章と第 16 章の漏れ電流と耐電圧要件を満たす必要があります)。したがって、上図の電気的クリアランスは、空中での巻線と固定子の積層間の最短距離です。 下の図に示すように、注意: モーターの巻線が適切に固定されておらず、モーターのステーターに非常に接近しています。第 29 条の沿面距離と空間距離の要件を満たすことができなくなりました。これは一般的な不適合項目です。 ファンモーターの基礎絶縁 basic insulation of fan motor

第3項 「タイプX、タイプY、タイプZのアタッチメント」の定義の見方

接続のタイプはアプライアンスのメーカーによって定義されます。一般に、これをタイプ X として定義することはまれです。これは、メーカーに不必要なリスクをもたらすことになるためです。一般にタイプ Y として定義されます。もちろん、電源コードが鋳造されている場合は、一般にタイプ Z として定義されます。次の図は、3 種類のアタッチメントの接続図を示しています。 タイプ X アタッチメント: 電源コードの接続は、アプライアンス内の特別に用意されたスペースで完了します。したがって、電源コードを交換する際には、端子台と内部配線以外の部分には触れません。電源コードを固定するネジは、通常の十字ネジまたは皿ネジです。電源コードの交換は管理可能な範囲内で行ってください。一般ユーザーが交換する電源コードは比較的シンプルで操作しやすいです。 タイプ Z アタッチメント、3.2.6 の説明と例を参照。 type Z attachment, see the explanation and examples in 3.2.6.

第3項 「タイプZアタッチメント」の定義の見方

タイプ Z アタッチメント: 製造元、そのサービス代理店、または同様の資格を持つ担当者が交換を行うための電源コードの取り付け方法。 一部の製品の電源コードは製品と一体成型されており、一般的な工具では取り外すことができません。または、一部の電化製品の電源コードは、接続後に熱硬化性材料によって電化製品にキャストされます。これらの同様の構造では、電源コードの交換作業を完了するには、電源コードに接続されている材料を破壊する必要があります。例:図のように水中ポンプのシェルに電源コードをエポキシ樹脂で流し込んでいます。電源コードを交換する場合は、注型エポキシ樹脂を破壊する必要があります。 ウォーターポンプ内部図

第 3 項 – 「タイプ Y アタッチメント」の定義の理解方法

タイプ Y アタッチメント: 製造元、そのサービス代理店、または同様の資格を持つ担当者が交換を行うための電源コードの取り付け方法。 次の 2 つの写真に示すように、アプライアンスの底部にあるカバーを取り外すと、コード クランプと内部電源コード コネクタが見えます。底部カバーの取り外しは比較的簡単ですが、電源コードが同様のニップルコネクタに接続されているか、機械的に固定されている場合は、電源コードを再接続するために専門の工具や破壊が必要となり、電源コードの交換が困難になります。この構造をタイプ Y アタッチメントとして定義する方が合理的です。 As shown in the following two pictures, after removing the cover at the bottom of the appliance, you can see the cord clamp and the internal supply cord connector. Removing the bottom cover is relatively easy, but if the power cord is connected with…