第3項「定格インパルス電圧」の定義の見方

定格インパルス電圧: 機器の定格電圧と過電圧カテゴリから導出される電圧。過渡過電圧に対する絶縁の指定された耐力を特徴づけます。

初心者にとって、この定義の物理的な意味を理解する必要はありません。規格におけるこの電圧値の主な用途は、クリアランスの制限値を決定することです。表 15 を参照すると、定格インパルス電圧値を直接決定できます。
過電圧カテゴリ(OVC)は標準IEC 60664-1から来ていると言わざるを得ません。以下の表に定義を示します。

一方、過電圧カテゴリ(OVC)については説明図があります。



On the other hand, there is a drawing to explain overvoltage category(OVC).




Similar Posts

  • Clause 3 – How to understand the definition of “thermostat”

    thermostat: temperature-sensing device, the operating temperature of which may be either fixed or adjustable and which during normal operation keeps the temperature of the controlled part between certain limits by automatically opening and closing a circuit. The thermostat itself does not control the temperature, the thermostat senses the temperature and controls the temperature by switching…

  • 第3項 – 「安全特別低電圧」の定義の見方

    安全特別低電圧: 導体間および導体とアース間の電圧は 42 V を超えず、無負荷電圧は 50 V を超えない 安全特別低電圧が主電源から得られる場合、安全絶縁を介する必要があります。 注 1 指定された電圧制限は、安全絶縁変圧器が定格電圧で供給されるという前提に基づいています。注 2 安全特別低電圧は SELV とも呼ばれます。 はじめに-1 。また、本項で定義する「安全」は、SELV を使用者が直接触れることができる絶対的な安全を意味するものではありません。ユーザーは、セクション 8.1.4 の要件を満たす SELV 回路のみに触れることができます。この電圧は通常、安全絶縁変圧器または別の巻線を備えたコンバータを通じて電圧を降圧することによって得られます。通常、これは安全絶縁変圧器を通じて得られます。ここで、別個の巻線を備えた安全絶縁変圧器またはコンバータは、一次巻線と二次巻線が物理的に構造的に分離されていることを保証できます。つまり、一次巻線と二次巻線が直接接触しないようにすることができます。この別巻線による回路分離に対応した電圧調整方式の一般的な例は、220V 回路に抵抗とコンデンサを直列に並列接続する RC 降圧方式です。 RC降圧方式では、回路内で高圧部と低圧部が接続されます。明らかに、物理的手段によって回路を分離する前者の方法の方が安全です。単純な物理的分離である場合でも、安全要件を満たすことはできません。規格で要求される絶縁は二重絶縁または強化絶縁の要件を満たす必要があります。簡単に言うと、高電圧部分と低電圧部分の間に非常に単純な絶縁(低温耐性を持つ薄いプラスチックシートなど)がある場合、この絶縁は高温または高電圧条件下で破損しやすく、基本的には絶縁できません。このプラスチックシートの層は絶縁の役割を果たしますが、高電圧回路と低電圧回路を物理的に分離することもあります。二重絶縁と強化絶縁の絶縁要件も二重保護の手段です。下の図に示すように、トランスには一次巻線と二次巻線を分離するためにディスクに垂直に配置された 3 つのプラスチック ブラケットがあり (一次巻線と二次巻線の外側には青いプラスチック テープが巻かれています)、一次巻線と二次巻線は物理的に隔離されています。 下の図に示すように、トランスには中央の一次巻線と二次巻線に黄色いテープが巻かれています。強化絶縁の沿面距離要件を満たしているかどうかを確認するには、2 つの巻線間の黒いブラケットの沿面距離に特に注意を払う必要があります。そうでない場合、その変圧器は安全絶縁変圧器として判断できません。 安全絶縁トランスの構造については次回詳しく説明します。 As shown in the figure below, the transformer has yellow tape wrapped around the primary and secondary windings in the…

  • 第 3 項 – 「沿面距離」の定義の理解方法

    沿面距離: 2 つの導電性部品間、または導電性部品とアクセス可能な表面間の絶縁体表面に沿った最短距離。 電荷は空気中を指向性を持って伝播し、電流を形成します。これがクリアランスの意味です。完全に絶縁された材料はないため、実際には電荷は絶縁材料自体を通って伝播する可能性もあります。通常のA4印刷用紙の両面と厚さ2mmのトレッドゴム材の両面に電位の異なる2つの電極を印加した場合、2つの電極間に形成される電流の差は非常に大きくなります。電荷は、絶縁材料の表面に沿って方向性を持って伝播することもあります。異なる材料の表面における電荷伝播の影響も異なります。絶縁材の表面に他の物質(汚染物質)が付着している場合、電荷伝播の影響も異なります。電荷が絶縁材料の表面に沿って伝播して感電を引き起こすのを防ぐために、沿面距離の定義と要件が作成されます。絶縁材料本体を通した電荷の伝播により、第 29 条の最初の段落に記載されている固体絶縁要件が生成されます。第 29.2 条には、沿面距離の要件が示されています。 沿面距離の定義は IEC 60664-1:2020 規格に基づいています。沿面距離を説明する必要があるため、IEC 60664-1:2020規格の図4から図14までの図を示す必要があります。ここで、読者は「X mm」をどのように決定するかを慎重に検討する必要があります。沿面距離を形成する経路上に溝がある場合、橋溝の状況が発生します。私は個人的に、ブリッジの主な原因は溝への汚染物質の堆積であると考えています。これらの汚染物質は主に粉塵であり、湿った粉塵は導電性が高くなります。したがって、規格の原文をコピーすると、次の 3 つの前提条件があります。– 溝を横切る距離が指定された幅 X (表 1 を参照) より小さい場合、沿面距離は溝を直接横切って測定され、溝の輪郭は考慮されません (図 4 を参照)– 溝を横切る距離が指定された幅 X 以上である場合 (表 1 を参照)、沿面距離は溝の輪郭に沿って測定されます (図 5 を参照)。– 凹部は、指定された幅 X に等しい長さを持ち、最も不利な位置に配置された絶縁リンクで橋渡しされていると想定されます (図 6 を参照)。– 相互に異なる位置を想定できる部品間で測定される隙間と沿面距離は、これらの部品が最も不利な位置にあるときに測定されます。 条件: 検討中のパスには、幅 X mm 未満の任意の深さの平行または収束側面の溝が含まれています。ルール: クリアランスと沿面距離は、図に示すように溝を直接横切って測定されます。 クリアランス沿面距離 条件: 検討中のパスに、任意の深さで X mm 以上の平行な側面の溝が含まれているルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。 クリアランス沿面距離 条件:…

  • Clause 3 – How to understand the definition of “non-detachable part”

    non-detachable-part: part that can only be removed or opened with the aid of a tool or a part that fulfils the test of 22.11. The definition of this concept is mainly for the judgment of clause 8 and clause 20, and the judgment of other clauses may also be used. On the appliance, whether any…

  • 第 3 項 – 「強化絶縁」の定義の理解方法

    強化絶縁:充電部に適用される単一絶縁。この規格で指定された条件下で二重絶縁と同等の感電に対する保護を提供します。注: 断熱材が 1 つの均質な部分であることを意味するものではありません。絶縁体は複数の層で構成される場合があり、補助絶縁体または基礎絶縁体として単独でテストすることはできません。 下の2枚の写真にあるように、左の写真は冷蔵庫の背面の写真です。左の写真は金属グリル越しに内部の基板が見えており、右の写真は内部の写真です。 PCB には充電部分があり、ユーザーがグリルに触れる可能性があります。グリルの隙間と回路基板上の充電部分の間の空気は、導電ループを形成する可能性があります。したがって、この距離は強化絶縁とのクリアランスとして決定できます。クリアランスと注意事項があるため、そして、空気ループで構成されていますが、空気ループを分離することはできず、この空気をどこでいくつかの部分に分割するかさえわかりません。ここで、2 つの点に注意する必要があります。金属グリルが接地されていない場合、グリルと回路基板の充電部分の間の空気は、強化絶縁の要件を満たす必要があります(クラス II 機器の第 8.2 項の要件に従って)。金属グリルが接地されている場合、その場合、グリルと回路基板の充電部分の間の空気は、基礎絶縁の要件のみを満たす必要があります。基礎絶縁と接地は二重の保護手段を備えたクラス I 機器であり、ユーザーは接地金属部分に触れることができるためです。 下に示されている水中ポンプは、内部に影付きの極モーターがあり、巻線が黄色の絶縁体で包まれています。水による損傷を防ぐために、モーターのステーター全体がエポキシ樹脂で包まれています。巻線を巻いた後は、基礎絶縁と補助絶縁を効果的にテストすることはできません。エポキシ樹脂を注入する前は、黄色の絶縁体が基礎絶縁体と考えられ、エポキシ樹脂は補助絶縁体と考えることができます。しかし、エポキシ樹脂をポンプハウジングに注入すると、黄色の絶縁材と非常に密着してしまうため、耐電圧試験の評価などで両者を分離して評価することができません。したがって、ポンプ巻線から外部からアクセス可能なエポキシ樹脂表面まで強化絶縁が形成されます。 The submersible pump shown below has a shaded pole motor inside, with the windings wrapped in yellow insulation. To prevent water damage, the entire motor stator is wrapped in epoxy resin. After the windings are wrapped, it is not possible…

  • Clause 3 – How to Understand the Definition of “all-pole disconnection”

    all-pole disconnection: disconnection of both supply conductors by a single initiating action or, for multi-phase appliances, disconnection of all supply conductors by a single initiating actionNOTE For multi-phase appliances, the neutral conductor is not considered to be a supply conductor. Single-phase power: An AC power system composed of one live wire and one neutral wire.​Three-phase…