Clause 3 – How to understand the definition of “heating appliance”

heating appliance: appliance incorporating heating elements but without any motor.

Before introducing this definition, we need to briefly introduce the electric heating elements commonly used in household electrical appliances.

PTC heating element: PTC (Positive Temperature Coefficient) heating elements are widely used for various heating applications because of their self-regulating properties and safety features. Here are the key characteristics:
1. Self-Regulating Function
Automatic temperature control: As the temperature increases, the electrical resistance of the PTC material increases, which reduces the current flowing through it. This effectively limits the temperature rise, making the element self-regulating.
No external control required: PTC heaters can automatically limit their maximum operating temperature, so there is no need for complex control systems.
2. Temperature Coefficient
Positive Temperature Coefficient: The resistance of the PTC element increases as the temperature rises. This characteristic is different from typical conductors, where resistance remains relatively constant.
Non-linear resistance curve: There is a sharp increase in resistance after a certain temperature, known as the “Curie temperature,” which makes the element stop drawing more current and maintain its set point.
3. Safety
Overheating protection: Due to the self-regulating behavior, PTC heaters are less prone to overheating, making them inherently safer for many applications.
Fail-safe operation: If airflow is blocked or there’s insufficient heat dissipation, the element will not overheat dangerously but rather reduce its power output.
4. Durability and Longevity
Long lifespan: The absence of moving parts and the self-regulating property means PTC heating elements tend to last longer than traditional resistive heaters.
Low maintenance: Since there are no parts that wear out easily, PTC elements typically require minimal maintenance.
5. Energy Efficiency
Efficient energy usage: By adjusting the power consumption automatically based on the surrounding temperature, PTC heaters only draw the necessary amount of power, reducing wasted energy.
Faster heat-up times: PTC elements can heat up quickly to a stable temperature and maintain it efficiently.
6. Wide Range of Applications
Versatile: PTC heaters are used in a variety of industries and products, including space heaters, car seat heaters, defrost systems, and industrial heating equipment.
Compact: They are available in various forms, including ceramic, polymer, and metal components, making them suitable for small, portable applications.
7. Electrical Insulation
Excellent insulation properties: Many PTC materials provide good electrical insulation, reducing the risk of electrical faults and ensuring safe operation in environments where exposure to moisture or other conductive elements is possible.
8. Constant Temperature Maintenance
Stable operating temperature: Once the element reaches a specific temperature, it will stay close to that temperature without the need for external thermostats or controllers.
9. Design Flexibility
Custom shapes and sizes: PTC elements can be made in different shapes and sizes to suit specific applications, from small-scale heating pads to large-area heaters.

These characteristics make PTC heating elements particularly advantageous for use in products requiring safe, efficient, and low-maintenance heating solutions.

PTC heating elements are typically used in HVAC products.

Electric heating tubes, also known as electric heating elements or tubular heaters, are devices used for heating through electrical resistance. They consist of a resistive wire encased in a metal tube and are commonly used in industrial and household heating applications. Here are the key characteristics:
1. High Efficiency in Heat Transfer
Direct heat transfer: Electric heating tubes convert almost all the electrical energy into heat with minimal energy loss. The heat is transferred directly to the medium (air, water, oil, etc.) that needs to be heated.
Uniform heating: The heat is evenly distributed across the surface of the heating element, leading to uniform temperature control.
2. Durable Construction
Robust metal tube: The heating wire is encased in a metallic sheath, usually made from materials like stainless steel, Incoloy, or copper, which are corrosion-resistant and capable of withstanding high temperatures.
Long lifespan: Due to their strong construction and efficient heat dissipation, electric heating tubes are known for their long operational life.
3. Insulation Material
Magnesium oxide (MgO) powder: The heating wire inside the tube is insulated by compacted magnesium oxide powder, which offers excellent thermal conductivity while providing electrical insulation to prevent short circuits.
4. Fast Heating Response
Quick temperature rise: Electric heating tubes can reach their operating temperatures quickly due to the efficient resistance heating of the wire inside. This allows them to deliver heat rapidly to the medium.
5. Versatility in Applications
Multiple forms and shapes: Electric heating tubes can be manufactured in various shapes, such as straight, U-shaped, or coiled, to meet the requirements of different applications.
Wide range of heating applications: They are used in industrial ovens, water heaters, oil heaters, boilers, kitchen appliances, air conditioners, and other heating systems.
6. Wide Temperature Range
High-temperature operation: Depending on the material used, electric heating tubes can operate at temperatures up to 800°C (1472°F) or more.
Stable temperature control: These heaters provide consistent heat over time, which makes them suitable for both low and high-temperature applications.
7. Easy Installation and Maintenance
Simple to install: They can be easily integrated into heating systems with minimal space requirements. The installation process is straightforward, and they can be replaced without major system overhauls.
Low maintenance: Electric heating tubes have no moving parts, which reduces wear and tear, resulting in minimal maintenance needs.
8. Energy Efficiency
Low energy loss: Since electric heating tubes convert nearly all electrical energy into heat, they are highly energy-efficient.
Low operating cost: Their efficiency translates into lower operating costs over time, especially when compared to traditional heating methods like gas or combustion heaters.
9. Corrosion and Environmental Resistance
Corrosion resistance: The metallic sheath of the heating tube, often made of stainless steel or Incoloy, makes it resistant to corrosion, especially in applications involving liquids, such as water heaters or oil baths.
Resistant to harsh environments: Electric heating tubes can be used in environments exposed to chemicals, humidity, and pressure, depending on the materials used in their construction.
10. Safety Features
Thermal insulation: The insulation materials inside the tube provide protection against electrical leakage and ensure safe operation.
Explosion-proof designs: In some applications, electric heating tubes can be designed with explosion-proof characteristics for use in hazardous environments.
11. Customizability
Custom wattage and voltage: Electric heating tubes can be designed to operate at different power levels (wattage) and voltage requirements, making them suitable for a variety of industrial and domestic needs.
Shape and size flexibility: The design flexibility allows manufacturers to tailor electric heating tubes for specific heating applications (like immersion heaters, cartridge heaters, or finned tubular heaters for air heating).
12. Applications
Domestic uses: Common in water heaters, ovens, toasters, dishwashers, and space heaters.
Industrial uses: Widely used in chemical processing, oil heating, HVAC systems, boilers, and industrial furnaces.
13. Cost-Effectiveness
Affordable production: Due to their relatively simple design and common materials, electric heating tubes are cost-effective compared to other advanced heating technologies.
Low operating cost: Their high energy efficiency means lower electricity consumption over time, making them economical for long-term operation.

These characteristics make electric heating tubes ideal for applications where reliable, efficient, and controlled heating is essential, both in industrial processes and household appliances.

This type of heating tube is used in a wide range of applications such as ovens, room heaters, kettles, etc.

Electric heating wire:
The spring-shaped electric heating wire in the electric furnace shown below, their material is usually ferrochrome-aluminum alloy: electric heating wire made of this material has the advantages of high resistivity, long life at high temperatures, light weight, and inexpensive. Especially suitable for use in the atmosphere containing sulfur and sulfide, it is the ideal heating material in industrial electric furnaces, household appliances, infrared heating devices. Iron-chromium-aluminum alloy can be used up to a maximum temperature of 1400 ℃, with excellent high-temperature oxidation resistance. However, the disadvantage of iron chrome aluminum alloy is the low high-temperature strength, with the use of temperature increases its plasticity increases, the components are easy to deform, not easy to bend and repair.
This heating material is used in many types of products, such as heated stoves for kitchens, room heaters, etc.

There are also some electric ceramic stoves and electric blankets that use carbon heating materials, which are characterized by fast heat generation, long heat radiation transmission distance, even heat generation and long life.
There are several kinds of heating materials as follows
Graphene: Graphene is a new type of two-dimensional carbon nanomaterials, with excellent thermal conductivity and electric heat conversion efficiency. Graphene electric blanket can rapidly generate heat and improve the warming and insulation effect.
Carbon nanotube film: This is a new type of flexible heating material, composed of hexagonally arranged carbon atoms forming a single layer to dozens of layers of coaxial tubes, with excellent electrical and thermal conductivity, long service life, belonging to the surface heat, heat uniformity.
Nickel-chromium alloy: nickel-chromium alloy electric heating wire main chemical composition of nickel and chromium, has a high electrical resistivity, good surface oxidation resistance, high thermal emissivity, corrosion resistance, resistance to vibration in the hot state, and has a high high-temperature strength, good processing performance and weldability. This material is made of electric heating wire high temperature strength than iron chromium aluminum alloy, high temperature use is not easy to deform, its structure is not easy to change, better plasticity, easy to repair. However, due to the use of scarcer nickel metal materials made of nickel-chromium alloy electric heating wire price is usually several times higher than the ferro-chromium aluminum alloy, and the use of lower temperatures than ferro-chromium aluminum alloy.
Using an electromagnetic coil as the heating element, the principle of electromagnetic induction is utilized to heat the metal material.
Far infrared heating is a newer heating method that directly heats the inside of food through the penetration and resonance principle of far infrared rays.
The heating methods and materials will not be introduced one by one, if necessary, you can check through the search engine.
According to the standard definition, a product with a heating element but without a motor is a heating appliance, because the product only has a heating element, so its function is generally used for heating, such as room heaters for heating air, kettles for heating water, ovens for heating food and so on.

A microwave oven, which heats water molecules in food by means of microwaves generated by a magnetron, is not a heating appliance, which is explicitly defined as a motor-operated appliance in clause 5.101 of the IEC 60335-2-25 standard.

Similar Posts

  • Clause 3 – How to understand the definition of “electronic component”

    electronic circuit: circuit incorporating at least one electronic component. The standard references electronic circuits in clause 19.11, clause 19.11.1, and clause 22.5. These requirements are additional to those for electronic circuits. The standard recognizes that electronic circuits alone cannot provide adequate protection. Electronic circuits may be susceptible to interference and malfunction, or they may be…

  • Clause 3 – How to understand the definition of “battery-operated appliance”

    (IEC 60335-1 Ed. 5.1) battery-operated appliance: appliance deriving its energy from batteries enabling the appliance to perform its intended function without a mains connection.(IEC 60335-1 Ed. 6)battery-operated appliance: appliance deriving its energy from batteries enabling the appliance to perform its intended function without a supply connectionNote 1 to entry: A battery-operated appliance can have a…

  • 第 3 項 – 「保護インピーダンス」の定義の理解方法

    保護インピーダンス: 通常の使用時および機器の故障の可能性がある状態での電流が安全な値に制限されるように、クラス II 構造の充電部分とアクセス可能な導電部分の間に接続されたインピーダンス。 ケース1:最初のケースは、通常、アダプター駆動の製品など、低電圧電源を必要とする状況です。アダプターの出力電圧はDC12V、DC24V、またはDC5Vです。これらの低電圧部品は、変圧器の変圧と整流器電流の整流によって得られるため、一般にユーザーが触れることができます。したがって、高電圧部分と電圧部分を効果的に絶縁する必要があります。当社の一般的なスイッチング電源基板では、EMC 伝導テストを実施すると、トランスの一次側で発生した干渉が一次側と二次側の間の寄生容量を通過し、150k~30MHz の伝導性干渉が発生して二次側に到達します。ここでは、Y コンデンサを使用して干渉信号を電源に戻し、干渉を相殺するループを形成します。そうしないと、導通テストが不合格になります。ここでの Y コンデンサは保護インピーダンスを形成します。下図の赤いボックスで選択された 2 つの Y コンデンサが保護インピーダンスです。 下図はマイナスイオン発生器の回路図です。赤い四角形で選択された 2 つの抵抗は、一般的な保護インピーダンスです。 下の図のCY1とCY2は保護インピーダンスですか? 規格の定義から、保護インピーダンスは接地が存在するクラス II 構造で使用されます。ここでの接地が保護接地として定義されている場合、保護インピーダンスはクラス II 構造で使用され、ここではクラス I 構造であるため、明らかに CY1 と CY2 を保護インピーダンスとして定義できません。ここでの接地が機能接地として定義されている場合、2 つの問題があります。まず、これはクラス I 構造であるため、CY1 と CY2 は保護インピーダンスとして定義できません。次に、クラス II 構造の場合、CY1 と CY2 を保護インピーダンスとして定義でき、保護インピーダンスの関連要件を満たす必要があります。私の個人的な意見は、CY1 と CY2 は保護インピーダンスではなく、直接基礎絶縁とみなしてよいと考えています。結局のところ、回路図に示されている設計は規格に受け入れられないということでしょうか?そしてnbsp; それらが保護インピーダンスである場合、どちらが第 22.42 条「保護インピーダンスは少なくとも 2 つの別個のコンポーネントで構成されなければならない」に準拠する必要があります。 From the definition of the standard, the…

  • 第 3 項 – 「クリアランス」の定義の理解方法

    クリアランス: 2 つの導電性部品間、または導電性部品と導電性部品間の空気中の最短距離アクセス可能な表面。 クリアランスは非常に重要な概念です。クリアランスを理解するには、完全に絶縁された物質はなく、空気も電気を通すことができるということをもう一度言う必要があります。電圧が非常に高い場合、電流は空気中に伝導します。雷雨時の落雷は、雷が空気中を伝導する典型的な例です。雷の電圧は非常に高いため、空気の非常に長い部分を突き破り、空気のこの部分が導電性になります。家電製品では、電圧は非常に低いですが、製品中には空気が多く含まれており、空気中にも電流が流れます。電圧が増加すると、電圧が空気を突き抜ける距離も長くなります。これにより、クリアランスの概念が生まれます。クリアランスの詳細な説明については、IEC 60664-1 (低電圧システム内の機器の絶縁調整 – パート 1: 原則、要件、およびテスト) を参照してください。 次の写真は電気的除去の経路をよく説明していると思います。 電圧の異なる2つの電極間や、充電部と電気製品使用者の手の間に隙間が生じる場合があります。上の写真の 2 つの電極を他の物体として想像するだけで済みます。 キー アクセス可能な発掘された金属部品 1 つ 2筐体3 接地されている金属部分4 出土した接近不可能な金属部分活電部 L1 と L2 は互いに分離されており、一部は開口部を備えたプラスチックの筐体で囲まれ、一部は空気に囲まれ、固体絶縁体と接触しています。構造内部にはアクセスできない金属が組み込まれています。金属カバーが 2 つあり、そのうちの 1 つはアースされています。絶縁クリアランスの種類基礎絶縁L1A L1D L2F 機能性絶縁体L1L2 補助絶縁DE FG 強化絶縁 L1K L1J L2I L1C 注記隙間 L1D または L2F が強化絶縁の隙間要件を満たしている場合、補助絶縁の隙間 DE または FG は測定されません。 L1CNOTE If the clearances L1D or…

  • 第 3 項 – 「タイプ X アタッチメント」の定義の理解方法

    タイプXアタッチメント:電源コードの交換が容易な取付方法エントリへの注記 1: 電源コードは特別に用意され、製造元またはそのサービス代理店からのみ入手できる場合があります。特別に用意されたコードには器具の一部が含まれる場合があります。 まず、この定義は電源コード用です。次に、注記によると、コードは製造元またはそのサービス代理店からのみ入手できます。第三に、電源コードの交換が容易な構造であることが挙げられる。注記から、このコードが一般の家電付属品市場で購入できる場合、炊飯器の供給コードであることがわかります 上の図の例に示されているものは、実際にはここで言及されている電源コードに属しません。最後に、電源コードもアプライアンスの一部である場合があります。 Type X のアタッチメントは簡単に交換できる必要があります。以下の図に示すように、 電源コードは極性端子に接続されています。この接続方法は通常のマイナスドライバーで完了します。取り付けが容易なタイプですので、タイプXアタッチメントとして定義できます。同様の理由で、ここでの電源コードの接続が便利でクイックなコネクタを使用して接続されている場合は、タイプ X アタッチメントとして定義することもできますが、この構造はほとんど見られません。セクション 26.2 の最初の文を参照してください。「特別な準備ソフトウェアを備えた機器を除き、タイプ X の取り付け接続を備えた機器および固定配線に接続された機器には、ネジ、ナット、または同様の装置による接続用の端子が提供されなければなりません。接続はハンダ付けで行います。」これは、タイプ X の取り付け接続を完了するために、ネジ、ナット、または同様の接続デバイスを使用できることを意味します。逆に、ネジ、ナット、または同様の接続デバイスを使用して接続を完了する構造は、タイプ X アタッチメントとして定義できます。ここではろう付けについても言及されているので、ろう付けもタイプ X アタッチメントで使用される接続方法であると考える理由がありますが、個人的にはろう付けは簡単な接続方法ではないため、タイプ X アタッチメントとはみなせないと考えています。ろう付けを伴う場合は、ろう付けよりも簡単なはんだ付けを検討しますが、はんだ付けも容易ではないと思いますので、Type Xアタッチメント接続と判断することはお勧めできません。タイプXの付属品は現在では非常に珍しいと言わざるを得ません。技術の向上と材料の最適化により、電源コードの損傷はほとんど発生しなくなり、たとえ電源コードが損傷したとしても、一般のユーザーが自分で修理や交換することは困難です。ほとんどの電気製品はタイプ Y の取り付け構造を採用しています。標準でタイプ X の取り付けを定義したとき、後進技術により多くの電源コードが損傷したため、この安全規則が規定されました。 It has to be said that type X attachment is very rare now. Due to the improvement of technology and the optimization of materials, the damage of…