|

Clause 3 – How to understand the definition of “room temperature”

room temperature: ambient temperature specified in the general conditions for the tests.
Note 1 to entry: The ambient temperature is specified in 5.7.

This item comes from standard IEC 60335-1:2020 edition 6.0. In commented version (CMV) of the official standard IEC 60335-1:2020 edition 6.0 allows the user to identify the changes made to the previous edition IEC 60335-1:2010 +AMD1:2013+AMD2:2016 CSV edition 5.2Experts’ comments are identified by a blue-background number. This item has comment “This term and definition was added to clarify what is intended when the term is used when applying the test specifications in the standard.” I think this comment gave us good explanation for this item.

Similar Posts

  • Clause 3 – How to understand the definition of “protective electronic circuit”

    protective electronic circuit: electronic circuit that prevents a hazardous situation under abnormal operating conditions.NOTE Parts of the circuit may also be used for functional purposes. With the advancement of technology, more and more electronic circuits are being used in household electrical products, and these electronic circuits are usually integrated on PCBs. They use microprocessor chips…

  • 第3項「二重絶縁」の定義の見方

    二重絶縁:基礎絶縁と補助絶縁を併用した絶縁方式 次の回路基板の画像にはアニメーション効果があります。点線の右側は動作電圧 220 ~ 240V のアクセス不可能な部分であり、点線の左側は最大動作電圧 24V のアクセス可能な部分です (点線の位置の構造が正常であると仮定します)。ラインは二重絶縁または強化絶縁の要件を満たしています)。効果的な絶縁を確保するために、一般的に、点線の右側のワイヤ (赤と青の内部ワイヤ) は、左側の比較的細い内部ワイヤに触れることはできません。右側のワイヤのワイヤ シースは基礎絶縁です。これは、ワイヤ シースが充電部と直接接触しており、充電部を保護する最初の層であるためです。左側の電線の電線シースは補助絶縁としてのみ定義できますが、第 29.3 項の補助絶縁の要件を満たしているかどうかは、第 29.3 項を導入する際に分析されます。 ここで、左側の電線の電線被覆を基礎絶縁、右側の電線の電線被覆を補助絶縁とすることはできないことに注意してください。 As shown in the following two pictures(fan), the internal lead wires sheath in the left picture is basic insulation, and the bottom plate of the outer casing is additional insulation. The following circuit board picture has an…

  • Clause 3 – How to understand the definition of “non-self-resetting thermal cut-out”

    non-self-resetting-thermal cut-out: thermal cut-out that requires a manual operation for resetting, or replacement of a part, in order to restore the current.NOTE Manual operation includes disconnection of the appliance from the supply mains. The thermal cut-out is equipped with a temperature-sensitive component, typically a bimetallic strip or a thermistor, which reacts to heat. As the…

  • 第3項「定格入力」の定義の見方

    定格入力電力:メーカーによってアプライアンスに割り当てられた電源入力記入への注記 1: 機器に電源入力が割り当てられていない場合、加熱機器および複合機器の定格入力電力は、機器が定格電圧で供給され、通常の動作で動作したときに測定された電源入力です。 一般に、メーカーは、最大電力入力の条件下で定格電圧で動作する製品によって生成される入力電力に基づいて定格電力入力を決定する場合があります。これは、10 項の電源入力テストでは、製品が定格電圧で動作する必要があるためです。一部の製品には特殊なケースがある場合があり、これについては後続の章で説明します。 経験豊富な開発チームの場合、製品設計の初期段階で定格入力が決定され、開発者は設計プログラムに従って製品を設計します。また、開発者が設計スキームを持っておらず、製品試作後に定格入力を暫定的に確認するケースもあります。ルームヒーター(石英管ヒーター)などの製品の定格電圧はAC220Vですが、通常はAC220V電源で製品を使用することができ、ヒーターの動作状態は最高レベルの熱に設定されます(首振りやその他の機能がある場合)をオンにする必要もあります)。これは、実際の入力電力、丸め値を定格電力入力として記録します。したがって、第 10 項の電源入力試験を実行する場合、試験値と定格値が規格で指定された偏差範囲を超えた場合、第 10 項の要件を満たすように定格入力電力を変更することができます。 ほとんどの場合、アプライアンスには定格電力入力が与えられます。製品には定格入力電流のみが与えられる場合もありますが、実際のテストでは、規格により製品の動作状態を定格入力電力に基づいて判断することが求められています。このメモの情報に従って入力電力情報を決定することができます。これはまれな状況です。製品のテスト条件が定格入力電力に基づく場合、通常、製品には定格入力電力のラベルが付けられます。製品のメーカーが入力電力定格を指定していない場合でも、サードパーティの試験機関は通常、製品をテストするときに入力電力定格情報を要求します。これは、定格電圧 AC220V、定格電流入力 10A と表示され、定格電力入力のない石英管ルーム ヒーターの仮想的な例です。第 11 項の耐熱試験を実施する場合、規格では定格入力電力の 1.15 倍で製品を動作させることが求められています。この状況では、この記事の注記の情報を使用して定格電力入力を決定できます。暖房器具には通常、定格入力が表示されています。

  • 第 3 項 – 「沿面距離」の定義の理解方法

    沿面距離: 2 つの導電性部品間、または導電性部品とアクセス可能な表面間の絶縁体表面に沿った最短距離。 電荷は空気中を指向性を持って伝播し、電流を形成します。これがクリアランスの意味です。完全に絶縁された材料はないため、実際には電荷は絶縁材料自体を通って伝播する可能性もあります。通常のA4印刷用紙の両面と厚さ2mmのトレッドゴム材の両面に電位の異なる2つの電極を印加した場合、2つの電極間に形成される電流の差は非常に大きくなります。電荷は、絶縁材料の表面に沿って方向性を持って伝播することもあります。異なる材料の表面における電荷伝播の影響も異なります。絶縁材の表面に他の物質(汚染物質)が付着している場合、電荷伝播の影響も異なります。電荷が絶縁材料の表面に沿って伝播して感電を引き起こすのを防ぐために、沿面距離の定義と要件が作成されます。絶縁材料本体を通した電荷の伝播により、第 29 条の最初の段落に記載されている固体絶縁要件が生成されます。第 29.2 条には、沿面距離の要件が示されています。 沿面距離の定義は IEC 60664-1:2020 規格に基づいています。沿面距離を説明する必要があるため、IEC 60664-1:2020規格の図4から図14までの図を示す必要があります。ここで、読者は「X mm」をどのように決定するかを慎重に検討する必要があります。沿面距離を形成する経路上に溝がある場合、橋溝の状況が発生します。私は個人的に、ブリッジの主な原因は溝への汚染物質の堆積であると考えています。これらの汚染物質は主に粉塵であり、湿った粉塵は導電性が高くなります。したがって、規格の原文をコピーすると、次の 3 つの前提条件があります。– 溝を横切る距離が指定された幅 X (表 1 を参照) より小さい場合、沿面距離は溝を直接横切って測定され、溝の輪郭は考慮されません (図 4 を参照)– 溝を横切る距離が指定された幅 X 以上である場合 (表 1 を参照)、沿面距離は溝の輪郭に沿って測定されます (図 5 を参照)。– 凹部は、指定された幅 X に等しい長さを持ち、最も不利な位置に配置された絶縁リンクで橋渡しされていると想定されます (図 6 を参照)。– 相互に異なる位置を想定できる部品間で測定される隙間と沿面距離は、これらの部品が最も不利な位置にあるときに測定されます。 条件: 検討中のパスには、幅 X mm 未満の任意の深さの平行または収束側面の溝が含まれています。ルール: クリアランスと沿面距離は、図に示すように溝を直接横切って測定されます。 クリアランス沿面距離 条件: 検討中のパスに、任意の深さで X mm 以上の平行な側面の溝が含まれているルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。 クリアランス沿面距離 条件:…

  • 第3項「基礎断熱」の定義の見方

    基本絶縁: 感電に対する基本的な保護を提供するために通電部分に適用される絶縁 一般的に言えば、充電部と直接接触する絶縁層は、一般的な絶縁材料 (PVC や ABS などのプラスチック材料など) である場合もあれば、空気または絶縁層上に形成された距離 (沿面距離) である場合もあります。断熱材の表面。ほとんどの国では、ユーザーが基礎断熱材に触れる可能性のある構造は認められていません。したがって、基礎絶縁は通常、機器の内部に配置されており、通常の動作中に触れることはできません。 下の左の写真は扇風機の底カバーの写真、右の写真は底カバーを外した写真です。右の写真の電源コード内の青と茶色のワイヤ外皮は、基本絶縁と考えることができます。同時に、黒いシェルに接続されているスイッチの白、赤、黒の線の外皮も基礎絶縁であると判断できます。ここでの充電部分は、ワイヤ内の銅芯です。また、スイッチ内の金属導体と白色シェル内面との距離により基礎絶縁性と判断できます。沿面距離の観点から見ると、スイッチ内の導体の電気は、スイッチの絶縁表面に沿って白いシェルの内面 (右の図の左の小さい角) まで伝導 (登って) します。この距離は、基礎絶縁体の沿面距離とみなしてください。電気的クリアランスの観点からは、スイッチ内部の導体の電気はファンボトムカバー内面とスイッチシェルの間の空気を介して直接伝導しており、この空気間の距離が基礎絶縁のクリアランスと判断されます。 (白いプラスチックシェルは追加絶縁と判断されます) 下図に示すように、モーターの巻線のラッカー塗装された導体は、モーターのステーターに挿入された白いスロット紙によって固定されています。巻線は規格により露出充電部として識別されます。ラッカー塗装された巻線の導体とモーターのステーターは、スロット ペーパーを介して導電ループを形成します (一般に、クラス I 機器の場合、モーター ハウジングが接地されているため、モーター ハウジングに接続されているステーターも接地されます。クラス II 機器では、モーター ハウジングとモーター ステーターは接地されていない中間金属コンポーネントです)。スロット紙の導電性は十分ではありませんが、スロット紙には微弱な電流が発生します。ここで発生する電流量はスロット紙の性能に直結します。ここでのスロット紙の材質は基礎絶縁体と判断できます。スロット ペーパーの表面は巻線の金属積層板に接続できるため、スロット ペーパーの表面上の距離は基礎絶縁体の沿面距離として決定できます。スロットペーパーの材質自体が固体絶縁の役割を果たします(固体絶縁には厚さの要件はありませんが、それでも第 13 章と第 16 章の漏れ電流と耐電圧要件を満たす必要があります)。したがって、上図の電気的クリアランスは、空中での巻線と固定子の積層間の最短距離です。 下の図に示すように、注意: モーターの巻線が適切に固定されておらず、モーターのステーターに非常に接近しています。第 29 条の沿面距離と空間距離の要件を満たすことができなくなりました。これは一般的な不適合項目です。 ファンモーターの基礎絶縁 basic insulation of fan motor