How are the creepage distances and electrical clearances of PTC heating element surfaces determined?

We are discussing here the second structure of the PTC heating element, PTC heating element structure please refer to the explanation of its definition.

figure 1
figure 2

How is the creepage distance of the functional insulation at the location of the red circle in Figure 1 determined?
We all know that NOTE 1 of TABLE 18 section has the following requirements.
NOTE 1 For PTC heating elements, the creepage distances over the surface of the PTC material need not be greater than the associated clearance for working voltages less than 250 V and for pollution degrees 1 and 2. However, the creepage distances between terminations are those specified in the table.
In the first case, the heating units are fixed by means of a conductive adhesive and a heat sink, with some gaps between the heating units, but all the gaps are filled with an insulating adhesive.
As shown in Fig. 2, the heatsinks connected to the fire wire and the heatsinks connected to the zero wire are functionally insulated by means of an insulating structure filled with adhesive, whereby the electrical gaps and creepage distances are formed by the upper surface of the insulating adhesive. Since the environment in which the PTC heating elements are located is of pollution class III, then NOTE 1 of the TABLE 18 section does not apply. Therefore, the requirement for creepage distance is 3.2 mm if it is determined according to the 250 V operating voltage, but of course, we need to use the interpolation method to calculate the creepage distance limit at the rated voltage. Usually, the gap between the two heat sinks is about 2.4mm, then its resulting creepage distance and electrical clearance is generally 2.4mm, the smarter approach is to raise the gap on the insulating adhesive, made into a curved projection, which lengthens the creepage distance and electrical clearance.

The second case, the heating unit through the conductive glue and heat sinks are fixed, leaving a certain gap between the heating unit, but the surface of the heating unit are attached to the insulating adhesive.
And the requirements of the first case is the same, just the middle of the gap if you increase the creepage distance of the problem. In fact, it is not difficult to think of, can be in the middle of the gap near the location of the heating unit to increase the glue, glue can not be laid flat on the side of the heating unit, need to be laid into a U-shaped. Of course, this process is more difficult to realize, not recommended.

In the third case, the heating unit is only fixed by the conductive glue and the heat sink for sticking, and there is a gap between multiple heating units. See Figure 1, the upper left corner of the component. There is no insulating glue attached between the heat generating units or on the surface.
The electrical gap is present in the gaps. What is in dispute here is how to determine the creepage distance. According to conventional logic, there is no creepage distance. According to the definition of creepage distance, creepage distance is in the surface of the insulating material trip, two heat sinks between the heating unit is not an insulating material, so its surface can not form a creepage distance path. Since no creepage distance can be formed, the prerequisite of clause 29.2.4 is not satisfied, and therefore there is no need to assess the creepage distance of functional insulation.

However, I personally still believe that we need to consider creepage distances, because the existence of creepage distances also takes into account the deposition of contaminants on the surface of a material, which can lead to short circuits. Here the PTC heating element generally work in Pollution degree 3, the surface must be for the accumulation of a lot of pollutants, pollutants, if too much, will lead to functional insulation short-circuit, resulting in appliances or power supply lines in the protective device action. This is in fact a less safe means, and the standard does not allow for the operation of protective devices in the supply line.

Similar Posts

  • 第3項 「遠隔操作」の定義の捉え方

    リモート操作: 電気通信、音響制御、バス システムなどの手段を使用して、機器から見えないところで開始できるコマンドによる機器の制御注記 赤外線コントロール自体は、遠隔操作に使用されるものとみなされません。ただし、通信、音響制御、バス システムなどのシステムの一部として組み込まれる場合があります。 一般的に使用されている赤外線リモコンは、赤外線リモコンの使用者が機器の作業現場にいて、赤外線リモコンを操作した後の機器の反応や動作状況をリアルタイムで確認できるため、遠隔操作ではありません。赤外線リモコンが通信システム、音声制御システム、またはバスシステムの一部である場合、この場合、制御の開始者は主に通信システム、音声制御システム、またはバスシステムを介して制御を完了する。一般的に、制御の開始者は、通信システム、音声制御システム、またはバス システムを介して別の赤外線コントローラに指示を送信し、その後、赤外線コントローラが赤外線リモコン情報を機器に送信して操作を完了します。この場合、この一連の制御システムは遠隔操作と見なすことができます。 例:一般的なエアコンに使用されている赤外線リモコンは遠隔操作ではありません。現在、建物の中核部分に設置できる集中型コントローラーが市販されています。ユーザーは、WIFI 経由で赤外線信号を送信するように制御できます。送信された赤外線信号は、室内のあらゆる電気製品を制御できます。これは遠隔操作です。 Commonly used infrared remote controls are not remote operation, because the user of the infrared remote controls is at the working site of the appliance, and can view the reaction and working status of the appliance after the infrared remote controls is operated in real time….

  • 第 3 項 – 「クリアランス」の定義の理解方法

    クリアランス: 2 つの導電性部品間、または導電性部品と導電性部品間の空気中の最短距離アクセス可能な表面。 クリアランスは非常に重要な概念です。クリアランスを理解するには、完全に絶縁された物質はなく、空気も電気を通すことができるということをもう一度言う必要があります。電圧が非常に高い場合、電流は空気中に伝導します。雷雨時の落雷は、雷が空気中を伝導する典型的な例です。雷の電圧は非常に高いため、空気の非常に長い部分を突き破り、空気のこの部分が導電性になります。家電製品では、電圧は非常に低いですが、製品中には空気が多く含まれており、空気中にも電流が流れます。電圧が増加すると、電圧が空気を突き抜ける距離も長くなります。これにより、クリアランスの概念が生まれます。クリアランスの詳細な説明については、IEC 60664-1 (低電圧システム内の機器の絶縁調整 – パート 1: 原則、要件、およびテスト) を参照してください。 次の写真は電気的除去の経路をよく説明していると思います。 電圧の異なる2つの電極間や、充電部と電気製品使用者の手の間に隙間が生じる場合があります。上の写真の 2 つの電極を他の物体として想像するだけで済みます。 キー アクセス可能な発掘された金属部品 1 つ 2筐体3 接地されている金属部分4 出土した接近不可能な金属部分活電部 L1 と L2 は互いに分離されており、一部は開口部を備えたプラスチックの筐体で囲まれ、一部は空気に囲まれ、固体絶縁体と接触しています。構造内部にはアクセスできない金属が組み込まれています。金属カバーが 2 つあり、そのうちの 1 つはアースされています。絶縁クリアランスの種類基礎絶縁L1A L1D L2F 機能性絶縁体L1L2 補助絶縁DE FG 強化絶縁 L1K L1J L2I L1C 注記隙間 L1D または L2F が強化絶縁の隙間要件を満たしている場合、補助絶縁の隙間 DE または FG は測定されません。 L1CNOTE If the clearances L1D or…

  • 第3項「定格インパルス電圧」の定義の見方

    定格インパルス電圧: 機器の定格電圧と過電圧カテゴリから導出される電圧。過渡過電圧に対する絶縁の指定された耐力を特徴づけます。 初心者にとって、この定義の物理的な意味を理解する必要はありません。規格におけるこの電圧値の主な用途は、クリアランスの制限値を決定することです。表 15 を参照すると、定格インパルス電圧値を直接決定できます。過電圧カテゴリ(OVC)は標準IEC 60664-1から来ていると言わざるを得ません。以下の表に定義を示します。 一方、過電圧カテゴリ(OVC)については説明図があります。 On the other hand, there is a drawing to explain overvoltage category(OVC).

  • 第3項 「定格周波数」の定義の見方

    定格周波数: メーカーによってアプライアンスに割り当てられた周波数。 一般に、定格周波数は、製品設計時の対象市場国の標準実用周波数です。世界中で実用周波数は 50 Hz と 60 Hz の 2 つだけであるため、値は 50 Hz または 60 Hz、または 50 と 60 Hz の両方のみになります。 定格周波数、定格電流または定格電力入力、定格電圧などは、機器を特徴付ける基本パラメータであり、対象市場のニーズやユーティリティ条件から導き出されます。規格に従って試験を行う場合、これらのパラメータに従って試験条件を設定します。したがって、これらのパラメータはテスト前に確認する必要があります。確認しないと、作業の重複が生じ、誤ったテスト結果が生成されます。

  • 第3項 「第3種建築物」の定義の見方

    クラスⅢ構造:感電に対する保護が安全特別低電圧に依存しており、安全特別低電圧以上の電圧が発生しない機器の一部注記 SELV での供給に加えて、基礎絶縁が必要な場合があります。 8.1.4を参照してください。注 2 機器の主要部分が SELV で動作し、取り外し可能な電源ユニットと一緒に納入される場合、機器のこの主要部分はクラス I 機器またはクラス II 機器のクラス III 構造とみなされます。 アプライアンスはプラグイン可能なアダプター (保護接地なし) によって電力を供給され、アダプターとアプライアンスは一緒にユーザーに配送されます。アダプターとアプライアンスは合わせてクラス II アプライアンスとして判断されます。アダプターはクラス II であるため、これによって感電に対する保護のクラスが決まります。ただし、機器 – ファンのみはクラス III 構造、つまりクラス II 機器内のクラス III 構造です。 もちろん、スイッチ電源 PCB が機器に組み込まれており、このスイッチ電源 PCB が SELV 回路を提供できるという別の状況もあります。そして、SELV回路部分はクラスII構造となっております。 Of course, there is another situation, that is, a switch power supply PCB is embedded in the appliance, and…

  • 第 3 項 – 「強化絶縁」の定義の理解方法

    強化絶縁:充電部に適用される単一絶縁。この規格で指定された条件下で二重絶縁と同等の感電に対する保護を提供します。注: 断熱材が 1 つの均質な部分であることを意味するものではありません。絶縁体は複数の層で構成される場合があり、補助絶縁体または基礎絶縁体として単独でテストすることはできません。 下の2枚の写真にあるように、左の写真は冷蔵庫の背面の写真です。左の写真は金属グリル越しに内部の基板が見えており、右の写真は内部の写真です。 PCB には充電部分があり、ユーザーがグリルに触れる可能性があります。グリルの隙間と回路基板上の充電部分の間の空気は、導電ループを形成する可能性があります。したがって、この距離は強化絶縁とのクリアランスとして決定できます。クリアランスと注意事項があるため、そして、空気ループで構成されていますが、空気ループを分離することはできず、この空気をどこでいくつかの部分に分割するかさえわかりません。ここで、2 つの点に注意する必要があります。金属グリルが接地されていない場合、グリルと回路基板の充電部分の間の空気は、強化絶縁の要件を満たす必要があります(クラス II 機器の第 8.2 項の要件に従って)。金属グリルが接地されている場合、その場合、グリルと回路基板の充電部分の間の空気は、基礎絶縁の要件のみを満たす必要があります。基礎絶縁と接地は二重の保護手段を備えたクラス I 機器であり、ユーザーは接地金属部分に触れることができるためです。 下に示されている水中ポンプは、内部に影付きの極モーターがあり、巻線が黄色の絶縁体で包まれています。水による損傷を防ぐために、モーターのステーター全体がエポキシ樹脂で包まれています。巻線を巻いた後は、基礎絶縁と補助絶縁を効果的にテストすることはできません。エポキシ樹脂を注入する前は、黄色の絶縁体が基礎絶縁体と考えられ、エポキシ樹脂は補助絶縁体と考えることができます。しかし、エポキシ樹脂をポンプハウジングに注入すると、黄色の絶縁材と非常に密着してしまうため、耐電圧試験の評価などで両者を分離して評価することができません。したがって、ポンプ巻線から外部からアクセス可能なエポキシ樹脂表面まで強化絶縁が形成されます。 The submersible pump shown below has a shaded pole motor inside, with the windings wrapped in yellow insulation. To prevent water damage, the entire motor stator is wrapped in epoxy resin. After the windings are wrapped, it is not possible…