第 3 項 – 「強化絶縁」の定義の理解方法

強化絶縁:充電部に適用される単一絶縁。この規格で指定された条件下で二重絶縁と同等の感電に対する保護を提供します。
注: 断熱材が 1 つの均質な部分であることを意味するものではありません。絶縁体は複数の層で構成される場合があり、補助絶縁体または基礎絶縁体として単独でテストすることはできません。

下の2枚の写真にあるように、左の写真は冷蔵庫の背面の写真です。左の写真は金属グリル越しに内部の基板が見えており、右の写真は内部の写真です。 PCB には充電部分があり、ユーザーがグリルに触れる可能性があります。グリルの隙間と回路基板上の充電部分の間の空気は、導電ループを形成する可能性があります。したがって、この距離は強化絶縁とのクリアランスとして決定できます。クリアランスと注意事項があるため、そして、空気ループで構成されていますが、空気ループを分離することはできず、この空気をどこでいくつかの部分に分割するかさえわかりません。ここで、2 つの点に注意する必要があります。金属グリルが接地されていない場合、グリルと回路基板の充電部分の間の空気は、強化絶縁の要件を満たす必要があります(クラス II 機器の第 8.2 項の要件に従って)。金属グリルが接地されている場合、その場合、グリルと回路基板の充電部分の間の空気は、基礎絶縁の要件のみを満たす必要があります。基礎絶縁と接地は二重の保護手段を備えたクラス I 機器であり、ユーザーは接地金属部分に触れることができるためです。

下に示されている水中ポンプは、内部に影付きの極モーターがあり、巻線が黄色の絶縁体で包まれています。水による損傷を防ぐために、モーターのステーター全体がエポキシ樹脂で包まれています。巻線を巻いた後は、基礎絶縁と補助絶縁を効果的にテストすることはできません。エポキシ樹脂を注入する前は、黄色の絶縁体が基礎絶縁体と考えられ、エポキシ樹脂は補助絶縁体と考えることができます。しかし、エポキシ樹脂をポンプハウジングに注入すると、黄色の絶縁材と非常に密着してしまうため、耐電圧試験の評価などで両者を分離して評価することができません。したがって、ポンプ巻線から外部からアクセス可能なエポキシ樹脂表面まで強化絶縁が形成されます。





The submersible pump shown below has a shaded pole motor inside, with the windings wrapped in yellow insulation. To prevent water damage, the entire motor stator is wrapped in epoxy resin. After the windings are wrapped, it is not possible to effectively test the basic insulation and supplementary insulation. Before the epoxy resin is poured, the yellow insulation can be considered basic insulation and the epoxy resin can be considered supplementary insulation. However, when the epoxy resin is poured into the pump housing, it will adhere to the yellow insulation material very tightly, and the two materials cannot be separated for evaluation, such as evaluating electrical strength tests. Therefore, reinforced insulation is formed from the pump winding to the externally accessible epoxy resin surface.






Similar Posts

  • 第3項「定格インパルス電圧」の定義の見方

    定格インパルス電圧: 機器の定格電圧と過電圧カテゴリから導出される電圧。過渡過電圧に対する絶縁の指定された耐力を特徴づけます。 初心者にとって、この定義の物理的な意味を理解する必要はありません。規格におけるこの電圧値の主な用途は、クリアランスの制限値を決定することです。表 15 を参照すると、定格インパルス電圧値を直接決定できます。過電圧カテゴリ(OVC)は標準IEC 60664-1から来ていると言わざるを得ません。以下の表に定義を示します。 一方、過電圧カテゴリ(OVC)については説明図があります。 On the other hand, there is a drawing to explain overvoltage category(OVC).

  • 第 3 項 – 「沿面距離」の定義の理解方法

    沿面距離: 2 つの導電性部品間、または導電性部品とアクセス可能な表面間の絶縁体表面に沿った最短距離。 電荷は空気中を指向性を持って伝播し、電流を形成します。これがクリアランスの意味です。完全に絶縁された材料はないため、実際には電荷は絶縁材料自体を通って伝播する可能性もあります。通常のA4印刷用紙の両面と厚さ2mmのトレッドゴム材の両面に電位の異なる2つの電極を印加した場合、2つの電極間に形成される電流の差は非常に大きくなります。電荷は、絶縁材料の表面に沿って方向性を持って伝播することもあります。異なる材料の表面における電荷伝播の影響も異なります。絶縁材の表面に他の物質(汚染物質)が付着している場合、電荷伝播の影響も異なります。電荷が絶縁材料の表面に沿って伝播して感電を引き起こすのを防ぐために、沿面距離の定義と要件が作成されます。絶縁材料本体を通した電荷の伝播により、第 29 条の最初の段落に記載されている固体絶縁要件が生成されます。第 29.2 条には、沿面距離の要件が示されています。 沿面距離の定義は IEC 60664-1:2020 規格に基づいています。沿面距離を説明する必要があるため、IEC 60664-1:2020規格の図4から図14までの図を示す必要があります。ここで、読者は「X mm」をどのように決定するかを慎重に検討する必要があります。沿面距離を形成する経路上に溝がある場合、橋溝の状況が発生します。私は個人的に、ブリッジの主な原因は溝への汚染物質の堆積であると考えています。これらの汚染物質は主に粉塵であり、湿った粉塵は導電性が高くなります。したがって、規格の原文をコピーすると、次の 3 つの前提条件があります。– 溝を横切る距離が指定された幅 X (表 1 を参照) より小さい場合、沿面距離は溝を直接横切って測定され、溝の輪郭は考慮されません (図 4 を参照)– 溝を横切る距離が指定された幅 X 以上である場合 (表 1 を参照)、沿面距離は溝の輪郭に沿って測定されます (図 5 を参照)。– 凹部は、指定された幅 X に等しい長さを持ち、最も不利な位置に配置された絶縁リンクで橋渡しされていると想定されます (図 6 を参照)。– 相互に異なる位置を想定できる部品間で測定される隙間と沿面距離は、これらの部品が最も不利な位置にあるときに測定されます。 条件: 検討中のパスには、幅 X mm 未満の任意の深さの平行または収束側面の溝が含まれています。ルール: クリアランスと沿面距離は、図に示すように溝を直接横切って測定されます。 クリアランス沿面距離 条件: 検討中のパスに、任意の深さで X mm 以上の平行な側面の溝が含まれているルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。 クリアランス沿面距離 条件:…

  • Clause 3 – How to understand the definition of “combined appliance”

    combined appliance: appliance incorporating heating elements and motors. We know that this standard mainly protects against the following five types of dangers, which are electric shock, mechanical damage from moving parts, thermal damage (such as burns), fire damage, chemical and biological damage. Generally speaking, thermal damage is caused by electric heating elements, and mechanical damage…

  • 第 3 条 – 用語と定義: 一般的な解釈

    IEC 60335-1 規格に詳しくないエンジニアにトレーニングを施すとしたら、2 つの方法があると思います。 1 つ目は、文節番号の順序に従って例を挙げて説明する方法です。これは私がよく使用する方法です。 2つ目は、第3条項の各定義に基づいて説明することです。最初にエンジニアが特定の用語の定義を理解できるようにし、次に例を示し、次にこの定義または用語に関する規格のすべての要件の説明を行います。2 番目の方法は、一部の上級エンジニアをトレーニングする場合により有利です。したがって、すべての定義を明確に説明できるよう最善を尽くしたいと思います。ここで私が伝えたいのは、定義は非常に重要であり、規格が異なれば同じ用語の定義も異なる場合があり、混乱を避けるために読者は注意深く把握する必要があるということです。

  • 第 3 項 – 第 3.1.1 ~ 3.1.8 項の「定格」の定義の理解方法

    3.1.3項を除く3.1.1項から3.1.8項までの定格電圧、定格電圧範囲、定格電力入力、定格電力入力範囲、定格電流、定格周波数、定格周波数範囲の7項目が定格項目となります。 . 標準の意図を要約すると、“評価” は、メーカーによってアプライアンスに割り当てられた一連のパラメータを表します。 第 7 条の要件に従って、この格付けグループのパラメータの一部は通常、格付けラベルにマークする必要があります。製品設計者はユーザーのニーズに応じてこれらのパラメータを決定します。定格電圧、定格周波数は製品を使用する場所の商用電源の条件により決まり、また国によっても異なりますので、使用条件に合わせて製品を設計する必要があります。さまざまな国。こちらが参考になります ウェブページ、ほぼすべての国の電力供給状況の情報を確認できます。定格電流または定格入力はユーザーの要求に従って決定されます。たとえば、ユーザーが強力なルームヒーターを必要とする場合、設計者は購入者の要求に従って定格入力電力 3000W のルームヒーターを設計します。逆に、 、たとえば 500 W 以下など、非常に低電力のルーム ヒーター用に設計することもできます。 規格に従って試験を行う前に、定格パラメータ値を確認する必要があります。規格内の多くの試験は定格パラメータ値に基づいて試験条件を設定するため、定格パラメータ値が間違っていると、ほとんどの試験結果が失われてしまいます。間違いなく間違っているでしょう。

  • IEC 60335-1の表17および表18

    表 17 と表 18 には、「動作電圧と gt; 10 V および ≤ 630 V については、電圧が表に指定されていない場合、沿面距離の値は補間によって求められる場合があります。」という注記があります。 動作電圧が表に記載されている値ではない場合、通常は制限値を取得するために計算する必要があります。便宜上、Excel テーブルを用意しました。テスターはテーブルを直接クエリして、対応する制限値を取得できます。 ダウンロード