Clause 3 – How to understand the definition of “motor-operated appliance”

motor-operated appliance: appliance incorporating motors but without any heating element
Note 1 to entry: Magnetically driven appliances are considered to be motor-operated appliances.

Household electrical appliances usually use heating elements or motors to complete their designed functions. The main functions are heating, such as heating food or air, and rotation or mechanical movement of products, such as blenders and fans. The realization of these two functions is basically completed by heating elements or motors. For appliances with only motors without heating element is motor-operated applaince. Common motors include AC asynchronous motors for air conditioners and fans, series motors used in blenders or hair dryers, shaded pole motors, synchronous motors, stepper motors, DC brushless motors, DC variable frequency motors, etc. It is necessary for us to briefly introduce the characteristics of various motors.

Shaded pole motor/squirrel cage motor:
The shaded pole motor/squirrel cage motor is the simplest type of unidirectional AC motor and usually uses a squirrel cage-type skewed slot cast aluminum rotor.

Shaded pole motor
Shaded pole motor

The shaded pole motor/squirrel cage motor has the following key characteristics:

  1. Simple Structure: The design is relatively straightforward, consisting mainly of a stator and rotor, with the rotor typically made of aluminum or copper bars short-circuited at both ends.
  2. High Efficiency: These motors have high efficiency, especially under rated load conditions, effectively converting electrical energy into mechanical energy.
  3. Low Maintenance: With no brushes or slip rings, squirrel cage motors require minimal maintenance, leading to stable operation and a long lifespan.
  4. Self-Starting Ability: Squirrel cage motors can start directly from the power supply, exhibiting good self-starting characteristics.
  5. High Starting Torque: They can provide significant starting torque, making them suitable for various industrial applications.
  6. Strong Load Adaptability: These motors can handle different load conditions well, particularly performing effectively under variable load situations.
  7. Cost-Effectiveness: Compared to other types of motors, squirrel cage motors have lower manufacturing costs and offer good economic value due to their high efficiency and low maintenance needs.
  8. Wide Applications: They are commonly used in pumps, fans, conveyors, compressors, and a variety of other industrial and commercial equipment.

Single-phase asynchronous motors:

Single Phase Asynchronous Resin Packing Motor For Air Conditioner
Three-phase asynchronous motor
Three-phase asynchronous motor internal view
Single-phase asynchronous motors
interna view for Single-phase asynchronous motors
thermal protect for motor

Single-phase asynchronous motors have the following characteristics:

  1. Simple Structure: These motors have a straightforward design, typically consisting of a stator, rotor, and auxiliary winding.
  2. Starting Method: Single-phase power cannot create a rotating magnetic field on its own, so these motors usually require additional starting windings or capacitors for startup, commonly using capacitor start or split-phase methods.
  3. Speed Characteristics: The speed is relatively stable, but compared to three-phase motors, the speed-load characteristics and efficiency are generally lower.
  4. Power Range: They typically operate at lower power levels, making them suitable for applications in household appliances and small machinery.
  5. Noise and Vibration: They may produce more noise and vibration during operation compared to three-phase motors.
  6. Starting Torque: The starting torque is usually lower, which can hinder direct startup under heavy load conditions.
  7. Cost-Effectiveness: Manufacturing and maintenance costs are typically lower, making them ideal for household appliances and small devices.
    Application Range: Commonly used in small fans, air conditioners, refrigerators, and pumps in both home and small industrial settings.

Squirrel cage motors typically have higher efficiency compared to single-phase asynchronous motors. This is mainly due to their design, which allows for better performance under load and reduced losses. Squirrel cage motors operate more efficiently, especially at full load, while single-phase motors may experience lower efficiency, particularly at partial loads. Therefore, for applications requiring higher efficiency and consistent performance, squirrel cage motors are usually the preferred choice.

DC Reduction step gear stepper motor:

DC Reduction step gear stepper motor
Small Stepper Motor Internal Gear Diagram
28BYJ48 Stepper Motor Gear Ratio Explanation
28BYJ48 Stepper Motor Pinout
28BYJ48 Stepper Motor Coil Structure

A DC reduction step gear stepper motor combines the characteristics of a stepper motor with a geared reduction system. This type of motor is valued for its precision control and increased torque, making it suitable for applications that require slow, controlled, and high-torque movement. Here are its key characteristics:

  1. Precise Positioning: With its stepwise rotation, a stepper motor can provide highly accurate positioning, as each step represents a specific increment of rotation. The addition of a reduction gear enhances this accuracy by allowing smaller steps in the output.
  2. Increased Torque: The reduction gear mechanism increases torque output by reducing the speed of the motor. This is beneficial for applications that require higher torque at lower speeds, such as robotics, CNC machines, and automation systems.
  3. Improved Holding Torque: The motor can maintain its position when not in motion (holding torque), which is ideal for applications that need to hold a load steady without additional power.
  4. Lower Speed, High Precision: Due to the reduction gear, the motor operates at a lower speed but with increased precision. This is useful in applications where controlled, slow movements are required.
  5. Reduction Ratio: The gear reduction system is available in different ratios, allowing users to select the gear ratio that best meets their speed and torque requirements. Common ratios range from 4:1 to 100:1, affecting both torque and resolution.
  6. Steady and Reliable Operation: This type of motor is known for providing stable, repeatable movements. It is less prone to stalling or losing steps, thanks to the torque amplification provided by the reduction gear.
  7. Heat Generation: Geared stepper motors can generate heat during prolonged operation, especially at lower speeds and high loads. Proper ventilation or heat management may be required in demanding applications.
  8. Power Consumption: While stepper motors tend to consume more power than DC motors when holding a position, the gear reduction can reduce the load on the motor, potentially lowering overall power consumption.

Small Synchronous Gear Motor:

Small synchronous gear motors are compact devices that combine a synchronous motor with a gear reduction mechanism. Here are their key characteristics:

  1. Synchronous Operation: The rotor of a synchronous gear motor rotates at the same speed as the rotating magnetic field of the stator. This leads to precise speed control and consistent performance.
  2. Gear Reduction: The integrated gear system reduces the output speed while increasing torque. This is beneficial for applications requiring high torque at lower speeds, such as in robotics or automation.
  3. High Efficiency: Synchronous motors are generally more efficient than their induction counterparts, especially under load. This efficiency translates to lower energy consumption in applications.
  4. Compact Size: Small synchronous gear motors are designed to be space-efficient, making them suitable for applications with limited space, like small appliances, toys, and robotic systems.
  5. Low Noise: These motors typically operate quietly compared to other types of motors, making them ideal for noise-sensitive environments.
  6. Stable Operation: They provide stable and reliable operation with minimal vibration, contributing to precise movements.
  7. Variable Speed Control: With the right control system, synchronous gear motors can achieve variable speed operation, allowing for adaptability in different applications.
  8. High Holding Torque: When stopped, they maintain their position effectively, which is important for applications that require precise positioning.
  9. Limited Start-Up Torque: While they perform well under steady conditions, synchronous motors may have lower start-up torque compared to some other motor types. They might need help to start under load.
  10. Wide Range of Applications: Commonly used in robotics, conveyor systems, small appliances, and other applications where controlled motion and space efficiency are essential.

Series motor:

Series motors, a type of DC motor, have distinct characteristics that make them suitable for specific applications. Here are their key characteristics:

  1. High Starting Torque: Series motors produce high starting torque, making them ideal for applications requiring significant initial power, such as in electric vehicles, cranes, and hoists.
  2. Speed-Torque Relationship: The speed of a series motor decreases with an increase in load. As the load increases, the current increases, which in turn increases the magnetic field strength, leading to higher torque but lower speed.
  3. Simple Construction: Series motors have a relatively simple construction, with the armature winding and field winding connected in series. This design contributes to their ease of use and maintenance.
  4. Variable Speed: The speed of a series motor can vary significantly with load changes. While this can be advantageous in certain applications, it can also lead to instability at very low loads, potentially causing the motor to run away (over-speed).
  5. Not Suitable for Constant Speed Applications: Due to the significant variation in speed with changes in load, series motors are not ideal for applications where constant speed is crucial.
  6. High Current Draw: Series motors draw a high current at startup, which can necessitate the use of appropriate fuses or circuit breakers to prevent damage.
  7. Field Weakening: In some applications, it’s possible to weaken the field by reducing the current in the field winding, allowing for increased speed under light loads, although this can decrease efficiency.
  8. Good for Applications with Variable Load: Series motors are well-suited for applications where the load changes frequently, such as in trains, lifts, and electric vehicles.
  9. Limited Efficiency: Generally, series motors are less efficient than some other types of motors, especially under varying load conditions.
  10. Brush Wear: The wear on brushes can be significant in series motors due to the high current and the nature of operation, which may require more frequent maintenance.

Series motors are commonly used in blenders, hair dryers, vacuum cleaners, and other applications that require high starting torque.

Similar Posts

  • Clause 3 – How to Understand the Definition of “all-pole disconnection”

    all-pole disconnection: disconnection of both supply conductors by a single initiating action or, for multi-phase appliances, disconnection of all supply conductors by a single initiating actionNOTE For multi-phase appliances, the neutral conductor is not considered to be a supply conductor. Single-phase power: An AC power system composed of one live wire and one neutral wire.​Three-phase…

  • 第3項 「定格電流」の定義の見方

    定格電流: メーカーによってアプライアンスに割り当てられた電流。注: アプライアンスに電流が割り当てられていない場合、定格電流は次のようになります– 暖房器具の場合、定格入力電力と定格電圧から計算された電流; – 電動器具および複合器具の場合、器具が定格電圧で供給され、通常の動作で動作したときに測定される電流 この条項の最初の注意事項である暖房器具は、加熱用の電気発熱体のみを使用するため、この発熱体は基本的に純粋な抵抗負荷であるため、電流は入力電力を割ったものに等しいため、数学的計算方法に直接従うことができます。定格電圧による(P = U/I)。 2番目の注意点は、この製品は純粋な抵抗負荷ではないため、式によると、P = U/Iの計算では正確な結果が得られず、電流値を取得するテストのみが必要です。一般的には一部電動器具 冷蔵庫などの定格ラベルには定格電流と表示されています。ほとんどのエアコンの定格ラベルには、定格入力と定格電流の両方が記載されています。 冷蔵庫の定格ラベル エアコンの定格ラベル rating label for air conditioner

  • 第 3 項 – 「サプライリード」の定義の理解方法

    供給リード線: 機器を固定配線に接続するためのワイヤのセットで、a に収容されていますアプライアンスの内部またはアプライアンスに取り付けられたコンパートメント ここで強調する必要がある制限が 2 つあります。 1 つ目は、コンパートメント (通常はプラスチック製の電気ボックス) か、電線の配線に使用できる電化製品の凹んだ位置に収納する必要があることです。 2番目の条件はワイヤーです。ここでのワイヤーはコードとは異なります。このタイプのワイヤは、絶縁ワイヤ シースが 1 層のみの一般的なワイヤです。このタイプのワイヤのシースは通常、茶色または青色です。アース線の場合は黄緑色です。 下の写真に示すように、この部分は天井ファンの固定接続と電源接続を示しています。ロッドから出ている電線は、通常、固定配線(部屋の上部の配線や端子台)に直接接続できます。ワイヤのこの部分は通常、ワイヤ シースの層を備えた通常のワイヤです。上部のベルに入れることができるので、リードとみなすことができます。

  • 第3項 「定格電圧」の定義の見方

    定格電圧:メーカーによってアプライアンスに割り当てられた電圧。 通常、この電圧は、製品設計時の対象市場の国の標準商用電圧です。ターゲット市場が決定したら、メーカーはターゲット市場の要件に従って製品を設計する必要があります。商用電源がAC220Vの国で使用することを目的として、定格電圧AC100V(電源入力電圧)の製品を設計することはできません。同時に、ほとんどの国では主電源電圧が定義されているため、ここでの定格電圧値は別の値になります。国際電気標準会議は、すべての国のプラグと主電源電圧に関する情報をリストした Web ページを提供しています。 https://iectest.iec.ch/world-plugs。参考までに IEC 60335-1 規格では、製品に電力を供給すること、または製品が動作状態にあることを必要とするすべてのテストは定格電圧に基づいています。定格電圧の選択が間違っている場合は、すべてのテストを繰り返す必要があります。研究室は、テストを実行する前に定格電圧を決定する必要があります。 IEC 60335-1 では、定格電圧を設定すべき定格電圧の値や範囲は規定されていませんが、実際には定格電圧の範囲は第 1 項の最初の段落で参考として示されており、これは定格電圧を設定するものではありません。単相の場合は 250 V、三相およびその他の電源タイプの機器の場合は 480 V を超えます。一般に、定格電圧はこの範囲を超えることはありません。各国が IEC 60335-1 規格に基づいて独自の偏差を追加しており、これらの偏差により一般に定格電圧要件が増加することに注意することが重要です。たとえば、日本では 100V、英国では 240V、中国では 220V です。 A クラス I バッテリ充電器の PDSH 2235 には、定格供給特性 3N~ および定格電圧 400V がマークされているという決定があります。 このバッテリ充電器は、250 V 以下の指定定格電圧制限に関して IEC 60335-2-29:2016 の範囲内にありますか?決定回答:規格の範囲によれば、定格電圧 400V(3N~)の充電器は IEC 60335-2-29 の対象外となります。

  • 第 3 項 – 「保護インピーダンス」の定義の理解方法

    保護インピーダンス: 通常の使用時および機器の故障の可能性がある状態での電流が安全な値に制限されるように、クラス II 構造の充電部分とアクセス可能な導電部分の間に接続されたインピーダンス。 ケース1:最初のケースは、通常、アダプター駆動の製品など、低電圧電源を必要とする状況です。アダプターの出力電圧はDC12V、DC24V、またはDC5Vです。これらの低電圧部品は、変圧器の変圧と整流器電流の整流によって得られるため、一般にユーザーが触れることができます。したがって、高電圧部分と電圧部分を効果的に絶縁する必要があります。当社の一般的なスイッチング電源基板では、EMC 伝導テストを実施すると、トランスの一次側で発生した干渉が一次側と二次側の間の寄生容量を通過し、150k~30MHz の伝導性干渉が発生して二次側に到達します。ここでは、Y コンデンサを使用して干渉信号を電源に戻し、干渉を相殺するループを形成します。そうしないと、導通テストが不合格になります。ここでの Y コンデンサは保護インピーダンスを形成します。下図の赤いボックスで選択された 2 つの Y コンデンサが保護インピーダンスです。 下図はマイナスイオン発生器の回路図です。赤い四角形で選択された 2 つの抵抗は、一般的な保護インピーダンスです。 下の図のCY1とCY2は保護インピーダンスですか? 規格の定義から、保護インピーダンスは接地が存在するクラス II 構造で使用されます。ここでの接地が保護接地として定義されている場合、保護インピーダンスはクラス II 構造で使用され、ここではクラス I 構造であるため、明らかに CY1 と CY2 を保護インピーダンスとして定義できません。ここでの接地が機能接地として定義されている場合、2 つの問題があります。まず、これはクラス I 構造であるため、CY1 と CY2 は保護インピーダンスとして定義できません。次に、クラス II 構造の場合、CY1 と CY2 を保護インピーダンスとして定義でき、保護インピーダンスの関連要件を満たす必要があります。私の個人的な意見は、CY1 と CY2 は保護インピーダンスではなく、直接基礎絶縁とみなしてよいと考えています。結局のところ、回路図に示されている設計は規格に受け入れられないということでしょうか?そしてnbsp; それらが保護インピーダンスである場合、どちらが第 22.42 条「保護インピーダンスは少なくとも 2 つの別個のコンポーネントで構成されなければならない」に準拠する必要があります。 From the definition of the standard, the…

  • 第 3 項 – 「沿面距離」の定義の理解方法

    沿面距離: 2 つの導電性部品間、または導電性部品とアクセス可能な表面間の絶縁体表面に沿った最短距離。 電荷は空気中を指向性を持って伝播し、電流を形成します。これがクリアランスの意味です。完全に絶縁された材料はないため、実際には電荷は絶縁材料自体を通って伝播する可能性もあります。通常のA4印刷用紙の両面と厚さ2mmのトレッドゴム材の両面に電位の異なる2つの電極を印加した場合、2つの電極間に形成される電流の差は非常に大きくなります。電荷は、絶縁材料の表面に沿って方向性を持って伝播することもあります。異なる材料の表面における電荷伝播の影響も異なります。絶縁材の表面に他の物質(汚染物質)が付着している場合、電荷伝播の影響も異なります。電荷が絶縁材料の表面に沿って伝播して感電を引き起こすのを防ぐために、沿面距離の定義と要件が作成されます。絶縁材料本体を通した電荷の伝播により、第 29 条の最初の段落に記載されている固体絶縁要件が生成されます。第 29.2 条には、沿面距離の要件が示されています。 沿面距離の定義は IEC 60664-1:2020 規格に基づいています。沿面距離を説明する必要があるため、IEC 60664-1:2020規格の図4から図14までの図を示す必要があります。ここで、読者は「X mm」をどのように決定するかを慎重に検討する必要があります。沿面距離を形成する経路上に溝がある場合、橋溝の状況が発生します。私は個人的に、ブリッジの主な原因は溝への汚染物質の堆積であると考えています。これらの汚染物質は主に粉塵であり、湿った粉塵は導電性が高くなります。したがって、規格の原文をコピーすると、次の 3 つの前提条件があります。– 溝を横切る距離が指定された幅 X (表 1 を参照) より小さい場合、沿面距離は溝を直接横切って測定され、溝の輪郭は考慮されません (図 4 を参照)– 溝を横切る距離が指定された幅 X 以上である場合 (表 1 を参照)、沿面距離は溝の輪郭に沿って測定されます (図 5 を参照)。– 凹部は、指定された幅 X に等しい長さを持ち、最も不利な位置に配置された絶縁リンクで橋渡しされていると想定されます (図 6 を参照)。– 相互に異なる位置を想定できる部品間で測定される隙間と沿面距離は、これらの部品が最も不利な位置にあるときに測定されます。 条件: 検討中のパスには、幅 X mm 未満の任意の深さの平行または収束側面の溝が含まれています。ルール: クリアランスと沿面距離は、図に示すように溝を直接横切って測定されます。 クリアランス沿面距離 条件: 検討中のパスに、任意の深さで X mm 以上の平行な側面の溝が含まれているルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。 クリアランス沿面距離 条件:…