Clause 3 – How to understand the definition of “protective extra-low voltage circuit”

protective extra-low voltage circuit: earthed circuit operating at safety extra-low voltage which is separated from other circuits by basic insulation and protective screening, double insulation or reinforced insulation
NOTE 1 Protective screening is the separation of circuits from live parts by means of an earthed screen.
NOTE 2 A protective extra-low voltage circuit is also known as a PELV circuit.

The definition of this term mentions earthed circuit operating at extra-low voltage. There is controversy over the understanding of this definition. The first view is that if the secondary circuit of the transformer is directly connected to the protective earthing, the secondary circuit can be determined to be PELV. The second view is that the secondary circuit of the transformer needs to pass through a protective impedance or additional insulation before it can be connected to the protective earthing circuit, which is considered PELV. I personally support the first view.
Let me first introduce how I came to my point of view. In the case of not knowing the intention of the standard, we can indirectly deduce the intention of the standard based on the definition and requirements of a certain concept (PELV) in several versions of the standard. There is no definition of PELV in the third edition of the IEC 60335-1 standard. PELV was added in the fourth edition of the standard. There are two requirements for PELV. The first is the fourth paragraph of 27.1 of the standard, which requires “Safety extra-low voltage circuits shall not be earthed unless they are protective extra-low voltage circuits.” The standard believes that PELV can be grounded (it does not say whether it is directly or indirectly grounded). In the default principle of the entire IEC 60335-1, the external protective earthing circuit is a circuit that is allowable to be touched by the user and is not a circuit that is dangerous for electric shock. Therefore, 27.1 actually has no purpose. The requirement of clause 27.1 is to reduce the earthing requirements of SELV, so the definition of PELV is given. Second, there is a exception for exemption from earthing resistance testing for PELV circuits in 27.5. Therefore, it is reasonable to believe that the definition of PELV does not have a practical safety protection function. At the same time, the requirements of clause 22.59 of the sixth edition of the standard are also mainly for transformers with two separate secondary circuits, and some isolation is required between these two secondary circuits.
Here we need to explain that the sixth edition of the standard changed SELV to ELV in the definition of the wording, which is not a relaxation of the requirements. It is correct to change SELV to ELV because the definition of PELV has emphasized that ELV is isolated by double insulation (basic insulation and protective screening, double insulation or reinforced insulation), so there is no need to repeat the requirement of SELV.

Next, let me explain the views of different points of view.
First, the fourth paragraph of 27.1 does not specify how the PELV circuit is grounded. It can be directly grounded or grounded after protective impedance or supplementary insulation. Then, the IEC 60335-1:2020 ED6.0 version added the requirements of clause 22.59, as follows: Protective extra-low voltage circuits shall be separated by at least supplementary insulation from circuits operating at safety extra-low voltage. There are two ways to understand 22.59. One is that SELV has supplementary insulation before grounding to prevent the current on the protective earthing from flowing back into the circuit, causing the risk of electric shock. After all, there is an electric charge on the earth. In some special cases, if the potential of SELV is lower than the potential of the earth, this will form a conductive loop and cause the risk of electric shock. The second situation is that the isolation transformer has two secondary windings, one of which is a SELV circuit, but because it does not comply with clause 8.1.4, it is not allowed to be touched, and the other secondary winding corresponds to PELV, which can be touched. In this way, the purpose of clause 22.59 is to ensure that the two independent secondary windings of the transformer (the two independent windings are PELV and SELV) do not affect each other. According to the first understanding of clause 22.59, combined with the understanding of 27.1 that it cannot be directly grounded, we can conclude that SELV can only be determined as PELV after being grounded through an additional insulation.


What I personally question is whether it is necessary to consider the situation where the current is generated between the external protective earthing circuit and the internal circuit of the appliance due to the influence of the internal circuit of the appliance. In conventional products without SELV or PELV circuits, there is basic insulation between the live parts and the protective earthing circuit. Does the standard believe that this basic insulation can prevent the dangerous current between the protective earthing circuit and the internal live parts? If the answer is yes, then clause 22.59 should require basic insulation instead of additional insulation. Of course, the standard may also increase the requirements for PELV circuits, regardless of the basic anti-electric shock protection rules of class I appliances. According to common sense, the PELV circuit is already a circuit generated by isolation transformer isolation, so why is there an isolation requirement for additional insulation? What kind of electric shock risk is isolated by the additional insulation here?

IECEE has made many decisions on PELV and functional earthing, such as DSH-492, CTL PDSH 2244, CTL-OP 106.
In addition, IECEE decision – DSH-492 has the following two pictures.

To be honest, I don’t understand the meaning and basic principles of these two pictures. I personally think that even if we understand the basic principles of this picture, we cannot make a judgment based on this principle, because this decision is only for the third edition of IEC 60335-1.
In addition, IECEE decision – OSM/HA 75 also mentions the requirements of PELV, and interested readers can read it.
According to the definition of SELV and PELV in IEC 61140 standard:

There is no requirement for earthing failure of PELV, so accordingly, the grounding measures of PELV are considered reliable by the standard.
Note 1: The protective shield is to isolate the circuit from the live parts by means of a grounded shield.
Note 2: The protective extra-low voltage circuit can also be represented by the PELV circuit.

SOURCE: IEC 60050-826 regarding to SELV and PELV as below:

Similar Posts

  • 第3項 「第二種工事」の定義の見方

    ここで重点を置くのは、二重絶縁または強化絶縁の要件を満たすことができる機器の構造の一部です。したがって、クラス I アプライアンスにはクラス II 構造も含まれます。例:下図のオーブンでは金属シェルとプラスチック製スイッチノブが使用されています。使用者がスイッチノブに触れると、ノブは絶縁体でできているため接地できません。感電に対する保護はノブ自体の絶縁にのみ依存します。スイッチ内部の充電部とスイッチノブ軸間は基礎絶縁となっており、スイッチノブは補助絶縁を形成します。したがって、スイッチノブの位置はクラスII構造となります。    

  • 第 3 項 – 「クラス 0I アプライアンス」の定義の理解方法

    クラス 0I 機器:全体に少なくとも基礎絶縁があり、接地端子が組み込まれているが、接地線のない電源コードと接地接点のないプラグを備えた機器 機器には外部保護導体(保護接地導体)を接続するための端子がありますが、固定配線には機器と保護導体を接続するための電線がなく、機器内部に接地導通を伝えるための配線や構造が設けられている場合があります。 日本では、以下のようなクラス0I機器専用のプラグがあります。 私の理解では、現在、クラス 0I 機器を使用しているのは日本だけです。通常、電源コードにはアース線が付いていますが、プラグ内のアースピンによってアースは行われません。代わりに、ツールを使用して別の端子または接地リングを接続し、効果的な接地を実現します。同様に、アプライアンスにもアース端子があります。設置前、この端子は外部配線に接続されておらず、通常は使用中および設置中に接続されます。

  • Clause 3 – How to understand the definition of “combined appliance”

    combined appliance: appliance incorporating heating elements and motors. We know that this standard mainly protects against the following five types of dangers, which are electric shock, mechanical damage from moving parts, thermal damage (such as burns), fire damage, chemical and biological damage. Generally speaking, thermal damage is caused by electric heating elements, and mechanical damage…

  • 第3項「基礎断熱」の定義の見方

    基本絶縁: 感電に対する基本的な保護を提供するために通電部分に適用される絶縁 一般的に言えば、充電部と直接接触する絶縁層は、一般的な絶縁材料 (PVC や ABS などのプラスチック材料など) である場合もあれば、空気または絶縁層上に形成された距離 (沿面距離) である場合もあります。断熱材の表面。ほとんどの国では、ユーザーが基礎断熱材に触れる可能性のある構造は認められていません。したがって、基礎絶縁は通常、機器の内部に配置されており、通常の動作中に触れることはできません。 下の左の写真は扇風機の底カバーの写真、右の写真は底カバーを外した写真です。右の写真の電源コード内の青と茶色のワイヤ外皮は、基本絶縁と考えることができます。同時に、黒いシェルに接続されているスイッチの白、赤、黒の線の外皮も基礎絶縁であると判断できます。ここでの充電部分は、ワイヤ内の銅芯です。また、スイッチ内の金属導体と白色シェル内面との距離により基礎絶縁性と判断できます。沿面距離の観点から見ると、スイッチ内の導体の電気は、スイッチの絶縁表面に沿って白いシェルの内面 (右の図の左の小さい角) まで伝導 (登って) します。この距離は、基礎絶縁体の沿面距離とみなしてください。電気的クリアランスの観点からは、スイッチ内部の導体の電気はファンボトムカバー内面とスイッチシェルの間の空気を介して直接伝導しており、この空気間の距離が基礎絶縁のクリアランスと判断されます。 (白いプラスチックシェルは追加絶縁と判断されます) 下図に示すように、モーターの巻線のラッカー塗装された導体は、モーターのステーターに挿入された白いスロット紙によって固定されています。巻線は規格により露出充電部として識別されます。ラッカー塗装された巻線の導体とモーターのステーターは、スロット ペーパーを介して導電ループを形成します (一般に、クラス I 機器の場合、モーター ハウジングが接地されているため、モーター ハウジングに接続されているステーターも接地されます。クラス II 機器では、モーター ハウジングとモーター ステーターは接地されていない中間金属コンポーネントです)。スロット紙の導電性は十分ではありませんが、スロット紙には微弱な電流が発生します。ここで発生する電流量はスロット紙の性能に直結します。ここでのスロット紙の材質は基礎絶縁体と判断できます。スロット ペーパーの表面は巻線の金属積層板に接続できるため、スロット ペーパーの表面上の距離は基礎絶縁体の沿面距離として決定できます。スロットペーパーの材質自体が固体絶縁の役割を果たします(固体絶縁には厚さの要件はありませんが、それでも第 13 章と第 16 章の漏れ電流と耐電圧要件を満たす必要があります)。したがって、上図の電気的クリアランスは、空中での巻線と固定子の積層間の最短距離です。 下の図に示すように、注意: モーターの巻線が適切に固定されておらず、モーターのステーターに非常に接近しています。第 29 条の沿面距離と空間距離の要件を満たすことができなくなりました。これは一般的な不適合項目です。 ファンモーターの基礎絶縁 basic insulation of fan motor

  • Clause 3 – How to understand the definition of “user maintenance”

    user maintenance: any maintenance operation stated in the instructions for use, or marked on the appliance, that the user is intended to perform. Allowed user-executed operations, the operation guideline was given in user manual, and it could be showed in enclosure of appliance. Since it is a allowed user-executed operation, then additional protective method should…

  • Clause 3 – How to understand the definition of “heating appliance”

    heating appliance: appliance incorporating heating elements but without any motor. Before introducing this definition, we need to briefly introduce the electric heating elements commonly used in household electrical appliances. PTC heating element: PTC (Positive Temperature Coefficient) heating elements are widely used for various heating applications because of their self-regulating properties and safety features. Here are…