第 3 項 – 「保護インピーダンス」の定義の理解方法

保護インピーダンス: 通常の使用時および機器の故障の可能性がある状態での電流が安全な値に制限されるように、クラス II 構造の充電部分とアクセス可能な導電部分の間に接続されたインピーダンス。

ケース1:
最初のケースは、通常、アダプター駆動の製品など、低電圧電源を必要とする状況です。アダプターの出力電圧はDC12V、DC24V、またはDC5Vです。これらの低電圧部品は、変圧器の変圧と整流器電流の整流によって得られるため、一般にユーザーが触れることができます。したがって、高電圧部分と電圧部分を効果的に絶縁する必要があります。当社の一般的なスイッチング電源基板では、EMC 伝導テストを実施すると、トランスの一次側で発生した干渉が一次側と二次側の間の寄生容量を通過し、150k~30MHz の伝導性干渉が発生して二次側に到達します。ここでは、Y コンデンサを使用して干渉信号を電源に戻し、干渉を相殺するループを形成します。そうしないと、導通テストが不合格になります。ここでの Y コンデンサは保護インピーダンスを形成します。下図の赤いボックスで選択された 2 つの Y コンデンサが保護インピーダンスです。



下図はマイナスイオン発生器の回路図です。赤い四角形で選択された 2 つの抵抗は、一般的な保護インピーダンスです。



下の図のCY1とCY2は保護インピーダンスですか?





規格の定義から、保護インピーダンスは接地が存在するクラス II 構造で使用されます。ここでの接地が保護接地として定義されている場合、保護インピーダンスはクラス II 構造で使用され、ここではクラス I 構造であるため、明らかに CY1 と CY2 を保護インピーダンスとして定義できません。ここでの接地が機能接地として定義されている場合、2 つの問題があります。まず、これはクラス I 構造であるため、CY1 と CY2 は保護インピーダンスとして定義できません。次に、クラス II 構造の場合、CY1 と CY2 を保護インピーダンスとして定義でき、保護インピーダンスの関連要件を満たす必要があります。私の個人的な意見は、CY1 と CY2 は保護インピーダンスではなく、直接基礎絶縁とみなしてよいと考えています。結局のところ、回路図に示されている設計は規格に受け入れられないということでしょうか?そしてnbsp;



それらが保護インピーダンスである場合、どちらが第 22.42 条「保護インピーダンスは少なくとも 2 つの別個のコンポーネントで構成されなければならない」に準拠する必要があります。



From the definition of the standard, the protective impedance is used in the class II construction, where there is earthing. If the earthing here is defined as protection earthing, then obviously, CY1 and CY2 cannot be defined as protection impedance, because protection impedance is used in class II construction, and here is class I construction. If the earthing here is defined as functional earthing, then there are two problems. First, this is a class I structure, then CY1 and CY2 cannot be defined as protection impedance. Second, if it is a class II structure, CY1 and CY2 can be defined as protection impedance, and then the relevant requirements of protection impedance need to be met. My personal opinion is that CY1 and CY2 are not protective impedances, and we can directly regard them as basic insulation. At the end, in other words, the design shown in the circuit diagram is not accepted by the standard? 

If they are protective impedances, then which is need to comply with clause 22.42 – “Protective impedance shall consist of at least two separate components.”.

Similar Posts

  • Clause 3 – How to understand the definition of “thermal link”

    thermal link: thermal cut-out which operates only once and requires partial or complete replacement It is a temperature sensing device, but it can only be operated once, when the temperature is higher than its set value, it will disconnect, and after disconnection, the current can not pass through, so as to play the role of…

  • 第3項 「遠隔操作」の定義の捉え方

    リモート操作: 電気通信、音響制御、バス システムなどの手段を使用して、機器から見えないところで開始できるコマンドによる機器の制御注記 赤外線コントロール自体は、遠隔操作に使用されるものとみなされません。ただし、通信、音響制御、バス システムなどのシステムの一部として組み込まれる場合があります。 一般的に使用されている赤外線リモコンは、赤外線リモコンの使用者が機器の作業現場にいて、赤外線リモコンを操作した後の機器の反応や動作状況をリアルタイムで確認できるため、遠隔操作ではありません。赤外線リモコンが通信システム、音声制御システム、またはバスシステムの一部である場合、この場合、制御の開始者は主に通信システム、音声制御システム、またはバスシステムを介して制御を完了する。一般的に、制御の開始者は、通信システム、音声制御システム、またはバス システムを介して別の赤外線コントローラに指示を送信し、その後、赤外線コントローラが赤外線リモコン情報を機器に送信して操作を完了します。この場合、この一連の制御システムは遠隔操作と見なすことができます。 例:一般的なエアコンに使用されている赤外線リモコンは遠隔操作ではありません。現在、建物の中核部分に設置できる集中型コントローラーが市販されています。ユーザーは、WIFI 経由で赤外線信号を送信するように制御できます。送信された赤外線信号は、室内のあらゆる電気製品を制御できます。これは遠隔操作です。 Commonly used infrared remote controls are not remote operation, because the user of the infrared remote controls is at the working site of the appliance, and can view the reaction and working status of the appliance after the infrared remote controls is operated in real time….

  • Clause 3 – How to understand the definition of “protective device”

    The standard emphasizes “abnormal operation” here. Only devices that operate under “abnormal operation” conditions can be defined as protective devices. Therefore, there are many types of protective devices, including overheating protection devices, overcurrent protection devices, and overpressure protection devices. Overheating protection devices include the thermal link, non- self-resetting thermal cut-out, self-resetting thermal cut-out, thermal cut-out,…

  • 第3項 「特別低圧」の定義の見方

    特別低電圧:機器内の電源から供給される電圧であって、機器が定格電圧で供給されている場合に、導体間および導体とアース間が50Vを超えない電圧 EU 低電圧指令の定義によれば、低電圧の範囲は AC で 50 ~ 1000V、DC で 75 ~ 1500V です。ちなみに、ほとんどの国ではこの電圧値に応じて高電圧と低電圧を分けています。したがって、範囲の上限を超える電圧は高電圧となり、範囲の下限を下回る電圧は超低電圧となります。この規格における定義では、DC と AC は区別されません。ここで注意していただきたいのは、電圧名は電圧値に応じて定義されているだけであり、低電圧回路の特定の部分を定義するものではありません。電圧は相対的なものであるため、電圧を測定する場合、電圧は両端間で測定する必要があります。つまり、電圧には基準点が必要であるため、規格ではワイヤ間およびワイヤとアース間の電圧について言及しています。 一般家庭用アルカリ電池の出力電圧、一般家庭用電化製品の制御基板上の変圧器以降の低圧回路やRC降圧回路の動作電圧など、いずれも特別低電圧と定義できるもの. 下図のようにR1とC1で降圧機能が完成しますので、R1とC1以降の回路は特別低圧回路と定義できます。

  • 第 3 項 – 「クラス 0 アプライアンス」の定義の理解方法

    クラス 0 機器: 感電に対する保護が基礎絶縁のみに依存しており、導電性のアクセス可能な部品があったとしても、設備の固定配線内の保護導体に接続するための手段がなく、万一の場合に信頼できる機器。環境に設置された基礎断熱材の欠陥。注記 クラス 0 機器には、基礎絶縁の一部または全体を形成する絶縁材料のエンクロージャ、または適切な絶縁によって充電部から分離された金属エンクロージャのいずれかが備えられています。絶縁材の筐体を備えた機器に内部部品を接地するための設備がある場合、それはクラス I 機器またはクラス 0I 機器とみなされます。 この種の機器には保護接地装置がなく、同時に充電部を絶縁層で 1 層だけ包むか、絶縁層を使用して使用者を充電部から隔離します。ほとんどの国ではクラス 0 のアプライアンスを受け入れません。クラス 0 機器を受け入れられるのは、主電源電圧 (定格電圧) が日本などの 100 V と米国やメキシコなどの 120 V の一部の国だけです。ここで、同じ入力電力を達成するためには(たとえば、定格入力電力が 3000W のルームヒーター)、定格電圧が低いほど、対応する動作電流が大きくなることに言及する必要があります。逆に、定格電圧が高いと、それに対応する入力電流は小さくなります。大電流の場合、製品内の通電部品の発熱がより深刻になり、火災の可能性も高まるため、防火要件がより厳しくなります。低電流高電圧の場合、通電部の発熱はそれほど深刻ではありませんが、高電圧のため絶縁破壊の可能性が高くなり、感電防止の要件がより厳しくなります。 IEC 60335 シリーズの規格には、感電に対する保護に関して非常に高い要件が定められているのはこのためです。 IEC 60335 規格の主な作成者は、定格電圧 220 ~ 240V の国の専門家です。一方、米国の UL シリーズ規格には防火に関するさらに厳しい要件があります。通常、全ての充電部を基礎絶縁のみで保護するような機器は存在しません。感電に対する保護測定のほとんどは、二重絶縁または強化絶縁の要件を満たすことができるのが一般的です。もちろん基礎絶縁+接地保護構造もございます。一般的な状況は、電源コードのワイヤ シースが 1 層だけであり、デバイスの保護レベルは電源コードの基本絶縁、つまり最低の保護レベルのクラス 0 によって決まります。 次の 2 つの図は、クラス 0 アプライアンスの電源コードの情報を示しています。 1 つは回路図を示し、もう 1 つはプラグ付きの電源コードを示します。 次の図は、クラス…