ข้อ 3 – จะเข้าใจคำจำกัดความของ “ฉนวนเสริม” ได้อย่างไร

จากหมายเหตุ สามารถทดสอบฉนวนเสริมและฉนวนพื้นฐานได้ทีละชิ้น ซึ่งหมายความว่าฉนวนเสริมและฉนวนพื้นฐานสามารถแยกแยะและแยกออกจากกันได้อย่างง่ายดาย ในทำนองเดียวกัน หากฉนวนประกอบด้วยหลายชั้นหรือหลายฉนวนที่ไม่สามารถแยกและแยกแยะได้ง่าย แต่เทียบเท่ากับฉนวนสองชั้นตามผลของฉนวนจริง ก็สามารถนิยามได้ว่าเป็นฉนวนเสริม นอกจากนี้ หากเป็นเพียงชั้นเดียวหรือฉนวนอิเล็กทริกเดียว ผลของฉนวนจะเทียบเท่ากับฉนวนสองชั้น ก็ยังสามารถกำหนดเป็นฉนวนเสริมได้
ดังแสดงในสองภาพด้านล่าง ภาพซ้ายเป็นภาพด้านหลังตู้เย็น แผงวงจรด้านในสามารถมองเห็นได้ผ่านตะแกรงโลหะในภาพด้านซ้าย และภาพภายในคือภาพด้านขวา มีส่วนที่มีกระแสไฟฟ้าอยู่บน PCB และผู้ใช้สามารถสัมผัสกระจังหน้าได้ อากาศระหว่างช่องว่างของกระจังหน้าและชิ้นส่วนที่มีไฟฟ้าบนแผงวงจรอาจทำให้เกิดวงจรนำไฟฟ้าได้ ดังนั้นระยะนี้สามารถกำหนดเป็นระยะห่างด้วยฉนวนเสริมได้ เพราะการกวาดล้างและ nbsp; และ nbsp;ประกอบด้วยห่วงอากาศ ห่วงอากาศไม่สามารถแยกออกได้ และเราไม่รู้ด้วยซ้ำว่าจะแบ่งอากาศนี้ออกเป็นหลายส่วนที่ไหน ที่นี่ต้องสังเกตสองประเด็น ถ้าตะแกรงโลหะไม่ได้ต่อสายดิน อากาศระหว่างตะแกรงและชิ้นส่วนที่มีไฟฟ้าในแผงวงจรต้องเป็นไปตามข้อกำหนดของฉนวนเสริม (ตามข้อกำหนดในข้อ 8.2 สำหรับเครื่องใช้ไฟฟ้าประเภท II) ถ้าตะแกรงโลหะต่อสายดิน ดังนั้นอากาศระหว่างตะแกรงและชิ้นส่วนที่มีกระแสไฟฟ้าในแผงวงจรจะต้องเป็นไปตามข้อกำหนดของฉนวนพื้นฐานเท่านั้น เนื่องจากฉนวนพื้นฐานพร้อมสายดินเป็นอุปกรณ์ Class I ที่มีมาตรการป้องกันสองชั้น และผู้ใช้สามารถสัมผัสชิ้นส่วนโลหะที่ต่อสายดินได้

ปั๊มจุ่มที่แสดงด้านล่างมีโพลมอเตอร์สีเทาอยู่ภายใน โดยมีขดลวดหุ้มด้วยฉนวนสีเหลือง เพื่อป้องกันความเสียหายจากน้ำ สเตเตอร์ของมอเตอร์ทั้งหมดจึงถูกห่อด้วยอีพอกซีเรซิน หลังจากที่พันขดลวดแล้ว จะไม่สามารถทดสอบฉนวนพื้นฐานและฉนวนเสริมได้อย่างมีประสิทธิภาพ ก่อนที่จะเทอีพอกซีเรซิน ฉนวนสีเหลืองถือได้ว่าเป็นฉนวนพื้นฐาน และอีพอกซีเรซินถือได้ว่าเป็นฉนวนเสริม อย่างไรก็ตาม เมื่อเทอีพอกซีเรซินลงในตัวเรือนปั๊ม มันจะยึดติดกับวัสดุฉนวนสีเหลืองอย่างแน่นหนา และไม่สามารถแยกวัสดุทั้งสองออกเพื่อการประเมินได้ เช่น การประเมินการทดสอบความแข็งแรงทางไฟฟ้า ดังนั้นฉนวนเสริมจึงถูกสร้างขึ้นตั้งแต่ขดลวดปั๊มไปจนถึงพื้นผิวอีพอกซีเรซินที่สามารถเข้าถึงได้จากภายนอก

As shown in the two pictures below, the left picture is a photo of the back of a refrigerator. The circuit board inside can be seen through the metal grille in the left picture, and the internal photo is the right picture. There are live parts on the PCB, and the user can touch the grille. The air between the gap of the grille and the live parts on the circuit board can form a conductive loop. Therefore, this distance can be determined as an clearance with reinforced insulation. Because the clearance  is composed of an air loop, the air loop cannot be separated, and we don’t even know where to divide this air into several parts. Here, two points need to be noted. If the metal grille is not grounded, the air between the grille and the live parts in the circuit board needs to meet the requirements of reinforced insulation (according to the requirements of clause 8.2 for class II appliance), if the metal grille is grounded, then the air between the grille and the live parts in the circuit board only needs to meet the requirements of basic insulation, because basic insulation plus earthing is a class I appliance with double protection measures, and the user can touch the earthing metal parts.





The submersible pump shown below has a shaded pole motor inside, with the windings wrapped in yellow insulation. To prevent water damage, the entire motor stator is wrapped in epoxy resin. After the windings are wrapped, it is not possible to effectively test the basic insulation and supplementary insulation. Before the epoxy resin is poured, the yellow insulation can be considered basic insulation and the epoxy resin can be considered supplementary insulation. However, when the epoxy resin is poured into the pump housing, it will adhere to the yellow insulation material very tightly, and the two materials cannot be separated for evaluation, such as evaluating electrical strength tests. Therefore, reinforced insulation is formed from the pump winding to the externally accessible epoxy resin surface.






Similar Posts

  • Clause 3 – How to understand the definition of “live part”

    live part: conductor or conductive part intended to be energized in normal use, including a neutral conductor but, by convention, not a PEN conductorNOTE 1 Parts, accessible or not, complying with 8.1.4 are not considered to be live parts.NOTE 2 A PEN conductor is a protective earthed neutral conductor combining the functions of both a…

  • Clause 3 – How to Understand the Definition of “off position”

    off position: stable position of a switching device in which the circuit controlled by the switch is disconnected from its supply or, for electronic disconnection, the circuit is de-energized.NOTE The off position does not imply an all-pole disconnection. With reference to the content in the NOTE, both all-pole disconnection and single-pole disconnection are a stable…

  • ข้อ 3 – วิธีทำความเข้าใจคำจำกัดความของ “เรต” ในข้อ 3.1.1 – 3.1.8

    เพื่อสรุปจุดประสงค์ของมาตรฐาน “ เรต” แสดงถึงชุดพารามิเตอร์ที่กำหนดให้กับเครื่องใช้ไฟฟ้าโดยผู้ผลิตตามข้อกำหนดของข้อ 7 พารามิเตอร์บางตัวในกลุ่มที่ได้รับการจัดอันดับนี้มักจะต้องมีการทำเครื่องหมายบนฉลากการให้คะแนน ผู้ออกแบบผลิตภัณฑ์จะกำหนดพารามิเตอร์เหล่านี้ตามความต้องการของผู้ใช้ แรงดันไฟฟ้าและความถี่ที่กำหนดจะถูกกำหนดตามเงื่อนไขของแหล่งจ่ายไฟฟ้าในสถานที่ที่จะใช้ผลิตภัณฑ์ และแตกต่างกันไปในแต่ละประเทศ ดังนั้นจึงจำเป็นต้องออกแบบผลิตภัณฑ์ตามเงื่อนไขของ ประเทศต่างๆ นี่คือข้อมูลอ้างอิง หน้าเว็บ คุณสามารถตรวจสอบข้อมูลสภาพแหล่งจ่ายไฟของเกือบทุกประเทศได้ กระแสไฟที่กำหนดหรือกำลังไฟที่กำหนดจะถูกกำหนดตามความต้องการของผู้ใช้ เช่น หากผู้ใช้ต้องการเครื่องทำความร้อนในห้องที่ทรงพลัง ผู้ออกแบบจะออกแบบเครื่องทำความร้อนในห้องที่มีกำลังไฟเข้าพิกัด 3000W ตามความต้องการของผู้ซื้อ ในทางกลับกัน นอกจากนี้ยังสามารถออกแบบสำหรับเครื่องทำความร้อนในห้องที่ใช้พลังงานต่ำมาก เช่น 500W หรือน้อยกว่าได้อีกด้วยก่อนที่เราจะทดสอบตามมาตรฐาน เราจำเป็นต้องยืนยันค่าพารามิเตอร์ที่กำหนด เนื่องจากการทดสอบจำนวนมากในมาตรฐานจะขึ้นอยู่กับค่าพารามิเตอร์ที่กำหนดเพื่อกำหนดเงื่อนไขการทดสอบ หากค่าพารามิเตอร์ที่กำหนดไม่ถูกต้อง ผลการทดสอบส่วนใหญ่ของเรา คงจะผิดแน่นอน.. Before we test according to the standard, we need to confirm the rated parameter values, because many tests in the standard are based on the…

  • ข้อ 3 – จะเข้าใจคำจำกัดความของ “ฉนวนหน้าที่” ได้อย่างไร

    ฉนวนกันความร้อนตามหน้าที่ถูกกำหนดไว้เนื่องจากความต้องการด้านการทำงานของเครื่องใช้ไฟฟ้า ในผลิตภัณฑ์เครื่องใช้ไฟฟ้าจะต้องมีชิ้นส่วนที่เป็นสื่อกระแสไฟฟ้าซึ่งมีศักย์ไฟฟ้าต่างกัน (แรงดันไฟฟ้าต่างกัน) หากแรงดันไฟฟ้าของตัวนำไฟฟ้าทั้งหมดในผลิตภัณฑ์เท่ากัน เครื่องจะไม่ทำงาน จากนั้นจะมีฉนวนการทำงานระหว่างชิ้นส่วนที่เป็นสื่อกระแสไฟฟ้าต่างๆ สมมติว่าแรงดันไฟฟ้าที่กำหนดของเครื่องใช้ไฟฟ้าคือ 220V จะมีฉนวนการทำงานระหว่างตัวนำทั้งสองของสายไฟ (สายไฟที่มีไฟฟ้าและสายนิวทรัล) หลังจากแรงดันไฟฟ้าที่กำหนดที่ 220V ถูกลดระดับลงโดยหม้อแปลงภายในเครื่องใช้ไฟฟ้า ก็ยังมี ความต่างของแรงดันไฟฟ้าระหว่างขาเอาท์พุตทั้งสองของขดลวดทุติยภูมิของหม้อแปลงไฟฟ้าจึงมีฉนวนการทำงานด้วยและยังมีสินค้าบางชนิดที่อาจมีวงจรบูสต์อยู่ภายในตัวสินค้าด้วย เช่น แรงดันใช้งานที่ปลายทั้งสองข้างของตัวเก็บประจุสตาร์ท เชื่อมต่อแบบอนุกรมกับมอเตอร์อะซิงโครนัส AC สูงกว่าแรงดันไฟฟ้าที่กำหนด ในกรณีนี้ยังมีฉนวนการทำงานระหว่างปลายทั้งสองของตัวเก็บประจุด้วย จากนั้นเราจะรู้ได้จริงว่ามีฉนวนการทำงานระหว่างตัวนำที่ไม่อยู่ในวงจรนำไฟฟ้าเดียวกัน แม้จะอยู่ในวงจรที่เป็นสื่อกระแสไฟฟ้าเดียวกัน ก็ยังมีแรงดันไฟฟ้าที่แตกต่างกัน และฉนวนการทำงานจะยังคงเกิดขึ้น รูปด้านล่างเป็นภาพฉนวนการทำงานทั่วไป ดังแสดงในรูปบนชั้นรางทองแดงของ PCB ส่วนสีน้ำตาลของการติดฉลากคือสายไฟที่มีกระแสไฟฟ้า (ตำแหน่งสีน้ำตาลสองตำแหน่งเชื่อมต่อระหว่างฟิวส์ปัจจุบัน) ส่วนสีน้ำเงิน ของการต่อคือสายกลางของสายไฟ สายไฟสด และสายนิวทรัลมีความต่างของแรงดันไฟฟ้าระหว่าง 2 เส้น ดังนั้นส่วนสีน้ำเงินของรางทองแดงที่เลือกกับส่วนสีน้ำตาลของรางทองแดงที่เลือกมีระยะห่างสั้นที่สุดระหว่าง รางนั่นคือฉนวนหน้าที่ ความจริงแล้วในการทำงานปกติ แผงวงจรในภาพด้านล่าง แรงดันไฟฟ้าบนรางทองแดงในหลายตำแหน่งไม่เท่ากัน ดังนั้น การก่อตัวของฉนวนตามหน้าที่ เครื่องอ่านจึงสามารถวิเคราะห์วงจรได้เองตามแรงดันไฟฟ้าในการทำงานของ แต่ละส่วน. ดังแสดงในรูปด้านล่าง แผนภาพการเชื่อมต่อขดลวดทั่วไปของมอเตอร์อะซิงโครนัสแบบ AC เมื่อตัวเก็บประจุในรูปกำลังทำงาน แรงดันไฟฟ้าที่ตกคร่อมตัวเก็บประจุมักจะสูงกว่าแรงดันไฟฟ้าที่กำหนดของผลิตภัณฑ์ ตัวอย่างเช่น หากแรงดันไฟฟ้าที่กำหนดคือ 220V แรงดันไฟฟ้าทั่วตัวเก็บประจุที่วัดโดยมัลติมิเตอร์ระหว่างการทำงานมักจะสูงกว่า 300V…