Clause 3 – How to understand the definition of “protective device”

protective device: device, the operation of which prevents a hazardous situation under abnormal operation conditions

The standard emphasizes “abnormal operation” here. Only devices that operate under “abnormal operation” conditions can be defined as protective devices. Therefore, there are many types of protective devices, including overheating protection devices, overcurrent protection devices, and overpressure protection devices.
Overheating protection devices include the thermal link, non- self-resetting thermal cut-out, self-resetting thermal cut-out, thermal cut-out, etc. mentioned earlier, but thermostat and temperature limiter are not protective devices.
The typical overcurrent protection device is the current fuse. There are many types of general current fuses. We will not introduce them here. Readers can go to Google by themselves.
Overpressure protection devices include water pressure protection devices, air pressure protection devices, etc.
In addition, there are water level switches, interlocking switches or devices that prevent a hazardous situation, three-phase electrical phase sequence protection devices, Air Circuit Breaker(ACB), leakage current protectors, etc., as well as intentionally weak parts defined by the standard. We can search for the word “protective device” in the standard to see what requirement are given for the “protective device” standard. This way we can understand the definition in reverse. This method can also be used to understand other definitions.

High Voltage Low Current EV Fuse
surface mounted current fuse

Similar Posts

  • 第 3 項 – 「クラス I アプライアンス」の定義の理解方法

    クラス I 機器: 感電に対する保護が基礎絶縁のみに依存するのではなく、導電性のアクセス可能な部品がそのような方法で設備の固定配線内の保護接地線に接続されるという追加の安全予防措置が含まれる機器。基礎絶縁が破損した場合でも、導電性のアクセス可能な部分が通電状態になることはありません注: この規定には、電源コード内の保護接地導体が含まれます。 二重保護の概念から、感電に対する保護には 2 つの注意事項があります。 1つ目は基礎絶縁、2つ目は接地です。基本的な絶縁に欠陥がある場合(内部ワイヤシースの破断、またはモータの巻線とステータディスク間の絶縁欠陥など)、危険な電流が機器のエンクロージャやエンクロージャなどのアクセス可能な金属部分を通って流れます。ファンモーターの。したがって、金属部品が接地されている場合、電気は接地を通して迂回され、人体には流れません。これは、機器のアクセス可能な金属部品と外部の接地導体間の抵抗は、通常、人体に比べて非常に小さいためです。体。電気は抵抗の低い導電経路を通って流れます。つまり、電気は接地導体を通って外部の接地グリッドに希釈されます。ここで述べた設備の固定配線の保護接地線は、固定配線の保護接地線であり、単に家庭用コンセントの接地ソケットとして理解されます。電気はこのコンセントを通って大地に流れます。地球は無限の良導体です。地球がこれらの電荷を薄めている、あるいは私たちが地球の上に立っているので、地球と同じ電位にあることが理解できます。電位差がある場合にのみ電流が発生します。したがって、人体に電流が流れることはなく、危険はありません。名前が示すように、保護接地線は保護のために使用されます。これは前述したとおりです。漏電事故が発生した場合、漏洩電流が大地に流れる可能性があります。例:エアコンの室外機や電気バーベキューグリルなど、大型の金具を使用した器具は基本的にクラスⅠ器具として設計されていますが、一部の金具を使用したレンジフード製品については、アースが取られていないクラスⅡ器具として設計されている場合があります。 /*!エレメント – v3.23.0 – 2024 年 5 月 8 日 */ および lt;br / アースはどのようにして電気製品のユーザーを感電から保護しますか? 金属ケースを備えた機器(トースターなど)に、活線が金属ケースに接触する故障が発生した場合、金属ケースが接地されていないと、金属ケースが活線となり、接触した人は感電する可能性があります。 しかし、金属ケースがアースされているトースターで同じ故障が発生した場合、回路が短絡して大電流が流れ、回路ブレーカーが作動して危険な状態が解消されます。事件が生きてくることは一度もなかった。さらに、障害があることがわかり、電気技師に修理してもらうことができます。 人体の抵抗は乾燥状態では 100000 オームにも達しますが、濡れて傷ついた皮膚では 1000 オームにまで低下することがあります。 アース経路の抵抗は 1 オームに抑えられています。さて、故障が発生したり、電流の漏れが発生したりすると、接地されたシステムでは、この電流は接地導体、つまり接地から流れます。アースが提供されていないシステムでは、人が触れることで、障害電流や漏れ電流が流れる抵抗が最小になる可能性があります。 特殊なケースが 2 つあります 英国のプラグなどの最初のピンは通常 3 つのピンがあり、そのうちの 1 つは他の 2 つよりも長くなります。この最も長いピンはアースに使用されます。ただし、アースピンが非金属材料に置き換えられる場合もあります。この場合、機器には接地対策が施されていないため、製品をクラス I 機器として定義することはできません。さらに、ピンは依然として金属である可能性がありますが、内部にはアース接続がありません。同様に、アプライアンスをクラス I アプライアンスとして定義することはできません。 下の写真はこのプラグです。BSI プラグの金属製アース ピンをプラスチック製のピンに置き換えBSI プラグの金属製アース ピンをプラスチック製のピンに置き換え2 番目は、機器には接地対策が施されていますが、この接地対策は PCB…

  • Clause 3 – How to understand the definition of “protective extra-low voltage circuit”

    protective extra-low voltage circuit: earthed circuit operating at safety extra-low voltage which is separated from other circuits by basic insulation and protective screening, double insulation or reinforced insulationNOTE 1 Protective screening is the separation of circuits from live parts by means of an earthed screen.NOTE 2 A protective extra-low voltage circuit is also known as…

  • Clause 3 – How to understand the definition of “combined appliance”

    combined appliance: appliance incorporating heating elements and motors. We know that this standard mainly protects against the following five types of dangers, which are electric shock, mechanical damage from moving parts, thermal damage (such as burns), fire damage, chemical and biological damage. Generally speaking, thermal damage is caused by electric heating elements, and mechanical damage…

  • 第3項 – 「安全特別低電圧」の定義の見方

    安全特別低電圧: 導体間および導体とアース間の電圧は 42 V を超えず、無負荷電圧は 50 V を超えない 安全特別低電圧が主電源から得られる場合、安全絶縁を介する必要があります。 注 1 指定された電圧制限は、安全絶縁変圧器が定格電圧で供給されるという前提に基づいています。注 2 安全特別低電圧は SELV とも呼ばれます。 はじめに-1 。また、本項で定義する「安全」は、SELV を使用者が直接触れることができる絶対的な安全を意味するものではありません。ユーザーは、セクション 8.1.4 の要件を満たす SELV 回路のみに触れることができます。この電圧は通常、安全絶縁変圧器または別の巻線を備えたコンバータを通じて電圧を降圧することによって得られます。通常、これは安全絶縁変圧器を通じて得られます。ここで、別個の巻線を備えた安全絶縁変圧器またはコンバータは、一次巻線と二次巻線が物理的に構造的に分離されていることを保証できます。つまり、一次巻線と二次巻線が直接接触しないようにすることができます。この別巻線による回路分離に対応した電圧調整方式の一般的な例は、220V 回路に抵抗とコンデンサを直列に並列接続する RC 降圧方式です。 RC降圧方式では、回路内で高圧部と低圧部が接続されます。明らかに、物理的手段によって回路を分離する前者の方法の方が安全です。単純な物理的分離である場合でも、安全要件を満たすことはできません。規格で要求される絶縁は二重絶縁または強化絶縁の要件を満たす必要があります。簡単に言うと、高電圧部分と低電圧部分の間に非常に単純な絶縁(低温耐性を持つ薄いプラスチックシートなど)がある場合、この絶縁は高温または高電圧条件下で破損しやすく、基本的には絶縁できません。このプラスチックシートの層は絶縁の役割を果たしますが、高電圧回路と低電圧回路を物理的に分離することもあります。二重絶縁と強化絶縁の絶縁要件も二重保護の手段です。下の図に示すように、トランスには一次巻線と二次巻線を分離するためにディスクに垂直に配置された 3 つのプラスチック ブラケットがあり (一次巻線と二次巻線の外側には青いプラスチック テープが巻かれています)、一次巻線と二次巻線は物理的に隔離されています。 下の図に示すように、トランスには中央の一次巻線と二次巻線に黄色いテープが巻かれています。強化絶縁の沿面距離要件を満たしているかどうかを確認するには、2 つの巻線間の黒いブラケットの沿面距離に特に注意を払う必要があります。そうでない場合、その変圧器は安全絶縁変圧器として判断できません。 安全絶縁トランスの構造については次回詳しく説明します。 As shown in the figure below, the transformer has yellow tape wrapped around the primary and secondary windings in the…

  • 第3項「補助絶縁」の定義の見方

    補助絶縁:基礎絶縁が切れた場合に感電を防ぐために、基礎絶縁とは別に施される独立した絶縁 基礎断熱材の外側にあり、基礎断熱材から独立しており、通常はユーザーがアクセスできる断熱材。補助絶縁はその名のとおり追加的なものであり、基礎絶縁に追加する絶縁を指します。これには、この規格の基本原則、つまり二重保護の原則が関係します。いかなる危険に対しても、少なくとも 2 層または 2 セットの保護措置を講じる必要があります。いずれかの保護手段が失敗した場合でも、アプライアンスは別の保護層によって保護されます。ここでの追加絶縁の要件は、基礎絶縁が機能しなくなった場合に保護の役割を果たすことができる絶縁を考慮することです。ここでの保護は充電部の保護のみを目的としています。この規格の他の要件には、非充電部分に対する二重保護措置の要件が含まれます。 下図に示すように、基礎絶縁体の外表面(ここでは内部電線の電線被覆の外表面、またはスイッチのプラスチック材料表面と理解してください)から絶縁可能な箇所まで使用者が触れる部分(機器の底カバーや側面シェル)は、写真例から、機器の底カバーや側面シェルが補助絶縁材であると判断できます。これに対応して、サイドシェル内面に沿った内部リード線シースから外部ユーザーが触れる可能性のある場所までの沿面距離を補助絶縁とし、内部基礎絶縁からの最短直線距離と定義できます。空気を通って外部ユーザーが触れる可能性のある場所までの距離を補助絶縁クリアランスとして定義できます。ここでいうクリアランスとは、一般的にボトムシェルとサイドシェルの間の隙間を指します。

  • 第3項「定格入力」の定義の見方

    定格入力電力:メーカーによってアプライアンスに割り当てられた電源入力記入への注記 1: 機器に電源入力が割り当てられていない場合、加熱機器および複合機器の定格入力電力は、機器が定格電圧で供給され、通常の動作で動作したときに測定された電源入力です。 一般に、メーカーは、最大電力入力の条件下で定格電圧で動作する製品によって生成される入力電力に基づいて定格電力入力を決定する場合があります。これは、10 項の電源入力テストでは、製品が定格電圧で動作する必要があるためです。一部の製品には特殊なケースがある場合があり、これについては後続の章で説明します。 経験豊富な開発チームの場合、製品設計の初期段階で定格入力が決定され、開発者は設計プログラムに従って製品を設計します。また、開発者が設計スキームを持っておらず、製品試作後に定格入力を暫定的に確認するケースもあります。ルームヒーター(石英管ヒーター)などの製品の定格電圧はAC220Vですが、通常はAC220V電源で製品を使用することができ、ヒーターの動作状態は最高レベルの熱に設定されます(首振りやその他の機能がある場合)をオンにする必要もあります)。これは、実際の入力電力、丸め値を定格電力入力として記録します。したがって、第 10 項の電源入力試験を実行する場合、試験値と定格値が規格で指定された偏差範囲を超えた場合、第 10 項の要件を満たすように定格入力電力を変更することができます。 ほとんどの場合、アプライアンスには定格電力入力が与えられます。製品には定格入力電流のみが与えられる場合もありますが、実際のテストでは、規格により製品の動作状態を定格入力電力に基づいて判断することが求められています。このメモの情報に従って入力電力情報を決定することができます。これはまれな状況です。製品のテスト条件が定格入力電力に基づく場合、通常、製品には定格入力電力のラベルが付けられます。製品のメーカーが入力電力定格を指定していない場合でも、サードパーティの試験機関は通常、製品をテストするときに入力電力定格情報を要求します。これは、定格電圧 AC220V、定格電流入力 10A と表示され、定格電力入力のない石英管ルーム ヒーターの仮想的な例です。第 11 項の耐熱試験を実施する場合、規格では定格入力電力の 1.15 倍で製品を動作させることが求められています。この状況では、この記事の注記の情報を使用して定格電力入力を決定できます。暖房器具には通常、定格入力が表示されています。