ข้อ 3 – วิธีทำความเข้าใจคำจำกัดความของ “ไฟล์แนบประเภท Z”
ตัวอย่าง: ดังแสดงในรูป สายไฟถูกหล่อเข้ากับเปลือกของปั๊มจุ่มด้วยอีพอกซีเรซิน หากต้องเปลี่ยนสายไฟ จะต้องทำลายอีพอกซีเรซินที่หล่อ
ภาพภายในปั้มน้ำ
internal view for water pump
สิ่งที่แนบประเภท X: การเชื่อมต่อสายไฟเสร็จสมบูรณ์ในพื้นที่ที่เตรียมไว้เป็นพิเศษในเครื่องใช้ไฟฟ้า ดังนั้นเมื่อเปลี่ยนสายไฟจะไม่สัมผัสส่วนอื่นใดนอกจากแผงขั้วต่อและสายภายใน สกรูที่ยึดสายไฟเป็นสกรูหัวแฉกหรือหัวแบนธรรมดา การเปลี่ยนสายไฟให้ดำเนินการภายในช่วงที่ควบคุมได้ สายไฟที่ผู้ใช้ทั่วไปแทนที่นั้นค่อนข้างเรียบง่ายและใช้งานได้ การแนบประเภท Y: เมื่อเปลี่ยนสายไฟ โดยทั่วไปจำเป็นต้องเปิดโครงโครงสร้างของเครื่องใช้ไฟฟ้า และยึดตัวเรือนเหล่านี้ด้วยสกรูพิเศษ เช่น สกรูหกเหลี่ยม หลังจากเปิดโครงโครงสร้างของเครื่องแล้ว ชิ้นส่วนทดแทนอาจสัมผัสชิ้นส่วนที่เคลื่อนไหวที่เป็นอันตรายหรือชิ้นส่วนอื่นๆ ที่มีไฟฟ้าภายในเครื่องได้ ในกรณีนี้ จะปลอดภัยกว่าหากกำหนดการเชื่อมต่อเป็นเอกสารแนบประเภท Y และกำหนดให้ผู้เชี่ยวชาญเปลี่ยนสายไฟ โดยปกติแล้ว สกรูยึดจะเป็นสกรูธรรมดาที่ผู้ใช้ทั่วไปสามารถใช้งานได้ แต่หากสัมผัสชิ้นส่วนที่เป็นอันตรายได้ในระหว่างการเปลี่ยนสายไฟ โดยทั่วไปจะกำหนดให้เป็นสิ่งที่แนบมาประเภท Y ไฟล์แนบประเภท Z ดูคำอธิบายและตัวอย่างใน 3.2.6. type Z attachment, see the explanation and examples in 3.2.6.
ตามที่แสดงในภาพซ้ายด้านล่าง เป็นภาพถ่ายฝาครอบด้านล่างของพัดลม และภาพขวาเป็นภาพถ่ายที่ไม่มีฝาครอบด้านล่าง ผิวลวดสีน้ำเงินและสีน้ำตาลภายในสายไฟในภาพด้านขวาถือได้ว่าเป็นฉนวนพื้นฐาน ในเวลาเดียวกัน สกินลวดสีขาว สีแดง และสีดำบนสวิตช์ที่เชื่อมต่อกับเปลือกสีดำสามารถถือเป็นฉนวนพื้นฐานได้ ส่วนที่มีกระแสไฟฟ้าที่นี่คือแกนทองแดงในเส้นลวด นอกจากนี้ ระยะห่างระหว่างตัวนำโลหะในสวิตช์และพื้นผิวด้านในของเปลือกสีขาวสามารถตัดสินได้ว่าเป็นฉนวนพื้นฐาน จากมุมมองของระยะตามผิวฉนวน กระแสไฟฟ้าในตัวนำภายในสวิตช์จะดำเนินการ (ไต่ขึ้น) ไปตามพื้นผิวฉนวนของสวิตช์ไปยังพื้นผิวด้านในของเปลือกสีขาว (มุมเล็กซ้ายของภาพขวา) และระยะนี้สามารถ ถือเป็นระยะห่างตามผิวฉนวนของฉนวนพื้นฐาน จากมุมมองของระยะห่างทางไฟฟ้า กระแสไฟฟ้าในตัวนำภายในสวิตช์จะถูกส่งโดยตรงผ่านอากาศระหว่างพื้นผิวด้านในของฝาครอบด้านล่างของพัดลมและเปลือกสวิตช์ และระยะห่างระหว่างอากาศนี้ถือเป็นระยะห่างของฉนวนพื้นฐาน (เปลือกพลาสติกสีขาวถือเป็นฉนวนเพิ่มเติม) ดังแสดงในรูปด้านล่าง ตัวนำเคลือบแล็คเกอร์ของขดลวดของมอเตอร์ได้รับการแก้ไขโดยกระดาษช่องสีขาวที่สอดเข้าไปในสเตเตอร์ของมอเตอร์ ขดลวดถูกระบุว่าเป็นชิ้นส่วนที่มีไฟฟ้าแบบเปิดโล่งตามมาตรฐาน ตัวนำเคลือบแล็คเกอร์ของขดลวดและสเตเตอร์ของมอเตอร์จะสร้างวงวนนำไฟฟ้าผ่านกระดาษช่อง (โดยทั่วไป หากเป็นเครื่องใช้ไฟฟ้าประเภท 1 สเตเตอร์ที่เชื่อมต่อกับตัวเรือนมอเตอร์จะถูกต่อสายดินด้วยเนื่องจากตัวเรือนมอเตอร์ต่อสายดิน ถ้าเป็นเช่นนั้น อุปกรณ์ประเภท II ตัวเรือนมอเตอร์ และสเตเตอร์ของมอเตอร์เป็นส่วนประกอบโลหะขั้นกลางที่ไม่มีการต่อสายดิน) แม้ว่าค่าการนำไฟฟ้าของกระดาษสล็อตจะไม่เพียงพอ แต่กระแสไฟอ่อนจะยังคงเกิดขึ้นบนกระดาษสล็อต ปริมาณกระแสไฟฟ้าที่สร้างขึ้นที่นี่เกี่ยวข้องโดยตรงกับประสิทธิภาพของกระดาษสล็อต วัสดุกระดาษช่องนี้สามารถกำหนดได้ว่าเป็นฉนวนพื้นฐาน พื้นผิวของกระดาษช่องสามารถเชื่อมต่อกับการเคลือบโลหะของขดลวด ดังนั้นระยะทางบนพื้นผิวกระดาษของช่องสามารถกำหนดเป็นระยะทางตามผิวฉนวนของฉนวนพื้นฐาน วัสดุของกระดาษสล็อตนั้นมีบทบาทเป็นฉนวนแข็ง (แม้ว่าจะไม่มีข้อกำหนดความหนาสำหรับฉนวนแข็ง แต่ก็ยังต้องเป็นไปตามข้อกำหนดกระแสไฟรั่วและความแข็งแรงทางไฟฟ้าของบทที่ 13 และ 16) ดังนั้น ระยะห่างทางไฟฟ้าในรูปด้านบนคือระยะห่างที่สั้นที่สุดระหว่างขดลวดและการเคลือบสเตเตอร์ในอากาศ ดังแสดงในรูปด้านล่าง และ nbsp; ลวดพันของมอเตอร์ไม่ได้รับการแก้ไขอย่างถูกต้องและอยู่ใกล้กับสเตเตอร์ของมอเตอร์มาก มันไม่สามารถตอบสนองข้อกำหนดระยะตามผิวฉนวนและระยะกวาดล้างของข้อ 29…
ความถี่ที่กำหนดในรูปแบบของช่วง โดยทั่วไปคือ 50-60 Hz แต่ทุกประเทศในโลกมีความถี่หลัก 50 Hz หรือ 60 Hz จึงไม่มีค่าความถี่กลาง ดังนั้น คำจำกัดความจึงไม่มีความหมายมากนัก อย่างไรก็ตาม ยังมีผู้ซื้อหรือผู้ผลิตที่ให้ช่วงความถี่ในรูปแบบ 50-60Hz ในความคิดของฉัน แม้จะพิจารณาความผันผวนของความถี่ที่เกิดจากแรงดันไฟฟ้าของอาคารที่ไม่เสถียร 50-60Hz ก็ไม่ได้คำนึงถึงสถานการณ์ที่น้อยกว่า 50Hz หรือมากกว่า 60Hz ดังนั้น ฉันขอแนะนำให้ทำเครื่องหมายความถี่ที่กำหนดเป็น 50/60Hz โดยตรงTherefore, I recommend marking the rated frequency as 50/60Hz directly.
คำจำกัดความของระยะห่างตามผิวฉนวนมาจากมาตรฐาน IEC 60664-1:2020 เนื่องจากเราต้องอธิบายระยะตามผิวฉนวน เราจึงต้องแสดงรูปภาพรูปที่ 4 ถึงรูปที่ 14 ในมาตรฐาน IEC 60664-1:2020 ในที่นี้ ผู้อ่านจะต้องพิจารณาอย่างรอบคอบถึงวิธีการกำหนด “X mm” หากมีร่องบนเส้นทางที่ทำให้เกิดระยะตามผิวฉนวน ก็จะมีสถานการณ์ร่องสะพาน โดยส่วนตัวผมคิดว่าสาเหตุหลักในการเชื่อมโยงคือการสะสมของสารมลพิษในร่อง มลพิษเหล่านี้ส่วนใหญ่เป็นฝุ่น และฝุ่นชื้นจะนำไฟฟ้าได้มากกว่า ดังนั้นการคัดลอกข้อความต้นฉบับของมาตรฐานจึงมีสมมติฐาน 3 ข้อดังต่อไปนี้: – ในกรณีที่ระยะห่างข้ามร่องน้อยกว่าความกว้าง X ที่ระบุ (ดูตารางที่ 1) ระยะห่างตามผิวฉนวนจะถูกวัดโดยตรงผ่านร่องและไม่คำนึงถึงรูปร่างของร่อง (ดูรูปที่ 4) – โดยที่ระยะห่างข้ามร่องเท่ากับหรือมากกว่าความกว้าง X ที่ระบุ (ดูตารางที่ 1) ระยะตามผิวฉนวนจะถูกวัดตามแนวโครงร่างของร่อง (ดูรูปที่ 5)– ช่องใดๆ ให้ถือว่าต่อเชื่อมด้วยตัวต่อฉนวนที่มีความยาวเท่ากับความกว้าง X ที่ระบุ และวางไว้ในตำแหน่งที่ให้ผลเสียมากที่สุด (ดูรูปที่ 6)– ระยะห่างจากอากาศและระยะห่างตามผิวฉนวนที่วัดระหว่างชิ้นส่วนซึ่งสามารถรับตำแหน่งที่แตกต่างกันโดยสัมพันธ์กัน ให้วัดเมื่อชิ้นส่วนเหล่านี้อยู่ในตำแหน่งที่ไม่เอื้ออำนวยที่สุดรูปที่ 4 – ข้ามร่องเงื่อนไข: เส้นทางที่พิจารณาประกอบด้วยร่องด้านขนานหรือบรรจบกันทุกความลึกที่มีความกว้างน้อยกว่า X…
PTC heating element: element intended for heating consisting mainly of positive temperature coefficient resistors that are thermally sensitive and have a rapid non-linear increase in resistance when the temperature is raised through a particular range. As the temperature increases, the resistance of the heating element of the PTC heating element increases. The relationship between temperature…
ฉนวนกันความร้อนตามหน้าที่ถูกกำหนดไว้เนื่องจากความต้องการด้านการทำงานของเครื่องใช้ไฟฟ้า ในผลิตภัณฑ์เครื่องใช้ไฟฟ้าจะต้องมีชิ้นส่วนที่เป็นสื่อกระแสไฟฟ้าซึ่งมีศักย์ไฟฟ้าต่างกัน (แรงดันไฟฟ้าต่างกัน) หากแรงดันไฟฟ้าของตัวนำไฟฟ้าทั้งหมดในผลิตภัณฑ์เท่ากัน เครื่องจะไม่ทำงาน จากนั้นจะมีฉนวนการทำงานระหว่างชิ้นส่วนที่เป็นสื่อกระแสไฟฟ้าต่างๆ สมมติว่าแรงดันไฟฟ้าที่กำหนดของเครื่องใช้ไฟฟ้าคือ 220V จะมีฉนวนการทำงานระหว่างตัวนำทั้งสองของสายไฟ (สายไฟที่มีไฟฟ้าและสายนิวทรัล) หลังจากแรงดันไฟฟ้าที่กำหนดที่ 220V ถูกลดระดับลงโดยหม้อแปลงภายในเครื่องใช้ไฟฟ้า ก็ยังมี ความต่างของแรงดันไฟฟ้าระหว่างขาเอาท์พุตทั้งสองของขดลวดทุติยภูมิของหม้อแปลงไฟฟ้าจึงมีฉนวนการทำงานด้วยและยังมีสินค้าบางชนิดที่อาจมีวงจรบูสต์อยู่ภายในตัวสินค้าด้วย เช่น แรงดันใช้งานที่ปลายทั้งสองข้างของตัวเก็บประจุสตาร์ท เชื่อมต่อแบบอนุกรมกับมอเตอร์อะซิงโครนัส AC สูงกว่าแรงดันไฟฟ้าที่กำหนด ในกรณีนี้ยังมีฉนวนการทำงานระหว่างปลายทั้งสองของตัวเก็บประจุด้วย จากนั้นเราจะรู้ได้จริงว่ามีฉนวนการทำงานระหว่างตัวนำที่ไม่อยู่ในวงจรนำไฟฟ้าเดียวกัน แม้จะอยู่ในวงจรที่เป็นสื่อกระแสไฟฟ้าเดียวกัน ก็ยังมีแรงดันไฟฟ้าที่แตกต่างกัน และฉนวนการทำงานจะยังคงเกิดขึ้น รูปด้านล่างเป็นภาพฉนวนการทำงานทั่วไป ดังแสดงในรูปบนชั้นรางทองแดงของ PCB ส่วนสีน้ำตาลของการติดฉลากคือสายไฟที่มีกระแสไฟฟ้า (ตำแหน่งสีน้ำตาลสองตำแหน่งเชื่อมต่อระหว่างฟิวส์ปัจจุบัน) ส่วนสีน้ำเงิน ของการต่อคือสายกลางของสายไฟ สายไฟสด และสายนิวทรัลมีความต่างของแรงดันไฟฟ้าระหว่าง 2 เส้น ดังนั้นส่วนสีน้ำเงินของรางทองแดงที่เลือกกับส่วนสีน้ำตาลของรางทองแดงที่เลือกมีระยะห่างสั้นที่สุดระหว่าง รางนั่นคือฉนวนหน้าที่ ความจริงแล้วในการทำงานปกติ แผงวงจรในภาพด้านล่าง แรงดันไฟฟ้าบนรางทองแดงในหลายตำแหน่งไม่เท่ากัน ดังนั้น การก่อตัวของฉนวนตามหน้าที่ เครื่องอ่านจึงสามารถวิเคราะห์วงจรได้เองตามแรงดันไฟฟ้าในการทำงานของ แต่ละส่วน. ดังแสดงในรูปด้านล่าง แผนภาพการเชื่อมต่อขดลวดทั่วไปของมอเตอร์อะซิงโครนัสแบบ AC เมื่อตัวเก็บประจุในรูปกำลังทำงาน แรงดันไฟฟ้าที่ตกคร่อมตัวเก็บประจุมักจะสูงกว่าแรงดันไฟฟ้าที่กำหนดของผลิตภัณฑ์ ตัวอย่างเช่น หากแรงดันไฟฟ้าที่กำหนดคือ 220V แรงดันไฟฟ้าทั่วตัวเก็บประจุที่วัดโดยมัลติมิเตอร์ระหว่างการทำงานมักจะสูงกว่า 300V…
You cannot copy content of this page