第 3 項 – 「沿面距離」の定義の理解方法

沿面距離: 2 つの導電性部品間、または導電性部品とアクセス可能な表面間の絶縁体表面に沿った最短距離。

電荷は空気中を指向性を持って伝播し、電流を形成します。これがクリアランスの意味です。完全に絶縁された材料はないため、実際には電荷は絶縁材料自体を通って伝播する可能性もあります。通常のA4印刷用紙の両面と厚さ2mmのトレッドゴム材の両面に電位の異なる2つの電極を印加した場合、2つの電極間に形成される電流の差は非常に大きくなります。電荷は、絶縁材料の表面に沿って方向性を持って伝播することもあります。異なる材料の表面における電荷伝播の影響も異なります。絶縁材の表面に他の物質(汚染物質)が付着している場合、電荷伝播の影響も異なります。電荷が絶縁材料の表面に沿って伝播して感電を引き起こすのを防ぐために、沿面距離の定義と要件が作成されます。絶縁材料本体を通した電荷の伝播により、第 29 条の最初の段落に記載されている固体絶縁要件が生成されます。第 29.2 条には、沿面距離の要件が示されています。



沿面距離の定義は IEC 60664-1:2020 規格に基づいています。沿面距離を説明する必要があるため、IEC 60664-1:2020規格の図4から図14までの図を示す必要があります。ここで、読者は「X mm」をどのように決定するかを慎重に検討する必要があります。沿面距離を形成する経路上に溝がある場合、橋溝の状況が発生します。私は個人的に、ブリッジの主な原因は溝への汚染物質の堆積であると考えています。これらの汚染物質は主に粉塵であり、湿った粉塵は導電性が高くなります。したがって、規格の原文をコピーすると、次の 3 つの前提条件があります。
– 溝を横切る距離が指定された幅 X (表 1 を参照) より小さい場合、沿面距離は溝を直接横切って測定され、溝の輪郭は考慮されません (図 4 を参照)
– 溝を横切る距離が指定された幅 X 以上である場合 (表 1 を参照)、沿面距離は溝の輪郭に沿って測定されます (図 5 を参照)。
– 凹部は、指定された幅 X に等しい長さを持ち、最も不利な位置に配置された絶縁リンクで橋渡しされていると想定されます (図 6 を参照)。
– 相互に異なる位置を想定できる部品間で測定される隙間と沿面距離は、これらの部品が最も不利な位置にあるときに測定されます。


図 4 – 溝の向こう側

条件: 検討中のパスには、幅 X mm 未満の任意の深さの平行または収束側面の溝が含まれています。
ルール: クリアランスと沿面距離は、図に示すように溝を直接横切って測定されます。


クリアランス


沿面距離


図5​​ 溝の輪郭

条件: 検討中のパスに、任意の深さで X mm 以上の平行な側面の溝が含まれている
ルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。


クリアランス


沿面距離


図 6 – 角度のある溝の輪郭

条件: 対象のパスに幅 X mm を超える V 字型の溝が含まれています。
ルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従いますが、溝の底は X mm の絶縁リンクで覆われています。


クリアランス


沿面距離


図7 リブの輪郭

条件:検討中のパスにリブが含まれている
ルール: クリアランスとは、リブ上部を通る最短の直接空気経路です。沿面経路はリブの輪郭に従います。


クリアランス


沿面距離


図 8 – X 未満の溝を持つアンセメント接合

条件: 検討中のパスには、両側に X mm 未満の幅の溝があるセメントなしジョイントが含まれています。
ルール: 空間距離と沿面距離は、「見通し線」の距離を示します。


クリアランス


沿面距離


図9 – X以上の溝を持つアンセメント継手

条件: 検討中のパスには、両側に X mm 以上の幅の溝があるアンセメント接合部が含まれています。
ルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。


クリアランス


沿面距離


図 10 – 片側に X より小さい溝があるアンセメント接合部

条件: 検討中のパスには、片側に幅 X mm 未満の溝があり、もう一方の側に幅 X mm 以上の溝があるアンセメント接合部が含まれています。
ルール: 図に示すように、クリアランスおよび沿面パス領域。


クリアランス


沿面距離


図 11 – アンセメント接合部の沿面距離とクリアランス

条件: アンセメント接合部の沿面距離が、接合部の沿面距離よりも小さい
バリアですが、バリア上部のクリアランスを超えています。
ルール: クリアランスとは、バリア上部を通る最短の直接空気経路です。


クリアランス


沿面距離


図 12 – X を超えるねじの頭までの沿面距離とクリアランス

ネジの頭と凹部の壁の間の隙間は考慮に入れるのに十分な広さ


クリアランス


沿面距離


図 13 – X 未満のネジ頭までの沿面距離とクリアランス

ネジの頭と凹部の壁の間の隙間が狭すぎて考慮できません。
沿面距離の測定は、距離が X mm に等しい場合のネジの頭から壁までの距離です。


クリアランス


沿面距離


図 14 – 導電性浮遊部の沿面距離と空間距離

C:導電性浮遊部
クリアランスは距離です = d + D
沿面距離も= d + D
注: の最小クリアランスについては、表 F.2 を参照してください dD.


クリアランス


沿面距離

次の例で指定する寸法 X には、汚染度に応じて次の最小値があります。
汚染度寸法Xの最小値
10.25mm
21.0mm
31.5mm
表1 溝の寸法

関連するクリアランス要件が 3 mm 未満の場合、最小寸法 X は関連するクリアランスの 1/3 に削減される可能性があります。
「X mm」の値を計算する方法を例として説明します。 5 mm のパスを測定し、そのパスに溝がある場合、上の表に基づいて汚染度 3 を仮定すると、X = 1.5 mm になります (汚染度を考慮)。測定する距離が 2.7 mm の場合、X = 2.7 mm/3 = 0.9 mm となります。



例 11 については個別に説明しましょう。上の図は IEC 60664-1:2007 バージョンからのものです。読者が図を注意深く確認すると、d と gt;X の場合にのみ、クリアランスが距離 = d + D となり、それ以外の場合はクリアランスが D であることがわかります。D と d の計算規則は同じです。ただし、実際には、これは間違いであり、規格が誤った要件を与えていることを指摘する必要があります。この規格の IEC 60664-1:2020 バージョンでは、このエラーが修正されています。

沿面距離の規則は空間距離の規則よりもはるかに複雑であり、第 29 条の要件もより複雑です。沿面距離については、読者が上記の情報を理解できれば、IEC 60335 シリーズの規格を実装するには十分だと思います。条項 29.2 の沿面距離に関する要件は、条項 29.2 を導入する際に詳細に導入されます。

Similar Posts

  • 第3項「補助絶縁」の定義の見方

    補助絶縁:基礎絶縁が切れた場合に感電を防ぐために、基礎絶縁とは別に施される独立した絶縁 基礎断熱材の外側にあり、基礎断熱材から独立しており、通常はユーザーがアクセスできる断熱材。補助絶縁はその名のとおり追加的なものであり、基礎絶縁に追加する絶縁を指します。これには、この規格の基本原則、つまり二重保護の原則が関係します。いかなる危険に対しても、少なくとも 2 層または 2 セットの保護措置を講じる必要があります。いずれかの保護手段が失敗した場合でも、アプライアンスは別の保護層によって保護されます。ここでの追加絶縁の要件は、基礎絶縁が機能しなくなった場合に保護の役割を果たすことができる絶縁を考慮することです。ここでの保護は充電部の保護のみを目的としています。この規格の他の要件には、非充電部分に対する二重保護措置の要件が含まれます。 下図に示すように、基礎絶縁体の外表面(ここでは内部電線の電線被覆の外表面、またはスイッチのプラスチック材料表面と理解してください)から絶縁可能な箇所まで使用者が触れる部分(機器の底カバーや側面シェル)は、写真例から、機器の底カバーや側面シェルが補助絶縁材であると判断できます。これに対応して、サイドシェル内面に沿った内部リード線シースから外部ユーザーが触れる可能性のある場所までの沿面距離を補助絶縁とし、内部基礎絶縁からの最短直線距離と定義できます。空気を通って外部ユーザーが触れる可能性のある場所までの距離を補助絶縁クリアランスとして定義できます。ここでいうクリアランスとは、一般的にボトムシェルとサイドシェルの間の隙間を指します。

  • Clause 3 – How to Understand the Definition of “all-pole disconnection”

    all-pole disconnection: disconnection of both supply conductors by a single initiating action or, for multi-phase appliances, disconnection of all supply conductors by a single initiating actionNOTE For multi-phase appliances, the neutral conductor is not considered to be a supply conductor. Single-phase power: An AC power system composed of one live wire and one neutral wire.​Three-phase…

  • 第 3 項 – 「保護インピーダンス」の定義の理解方法

    保護インピーダンス: 通常の使用時および機器の故障の可能性がある状態での電流が安全な値に制限されるように、クラス II 構造の充電部分とアクセス可能な導電部分の間に接続されたインピーダンス。 ケース1:最初のケースは、通常、アダプター駆動の製品など、低電圧電源を必要とする状況です。アダプターの出力電圧はDC12V、DC24V、またはDC5Vです。これらの低電圧部品は、変圧器の変圧と整流器電流の整流によって得られるため、一般にユーザーが触れることができます。したがって、高電圧部分と電圧部分を効果的に絶縁する必要があります。当社の一般的なスイッチング電源基板では、EMC 伝導テストを実施すると、トランスの一次側で発生した干渉が一次側と二次側の間の寄生容量を通過し、150k~30MHz の伝導性干渉が発生して二次側に到達します。ここでは、Y コンデンサを使用して干渉信号を電源に戻し、干渉を相殺するループを形成します。そうしないと、導通テストが不合格になります。ここでの Y コンデンサは保護インピーダンスを形成します。下図の赤いボックスで選択された 2 つの Y コンデンサが保護インピーダンスです。 下図はマイナスイオン発生器の回路図です。赤い四角形で選択された 2 つの抵抗は、一般的な保護インピーダンスです。 下の図のCY1とCY2は保護インピーダンスですか? 規格の定義から、保護インピーダンスは接地が存在するクラス II 構造で使用されます。ここでの接地が保護接地として定義されている場合、保護インピーダンスはクラス II 構造で使用され、ここではクラス I 構造であるため、明らかに CY1 と CY2 を保護インピーダンスとして定義できません。ここでの接地が機能接地として定義されている場合、2 つの問題があります。まず、これはクラス I 構造であるため、CY1 と CY2 は保護インピーダンスとして定義できません。次に、クラス II 構造の場合、CY1 と CY2 を保護インピーダンスとして定義でき、保護インピーダンスの関連要件を満たす必要があります。私の個人的な意見は、CY1 と CY2 は保護インピーダンスではなく、直接基礎絶縁とみなしてよいと考えています。結局のところ、回路図に示されている設計は規格に受け入れられないということでしょうか?そしてnbsp; それらが保護インピーダンスである場合、どちらが第 22.42 条「保護インピーダンスは少なくとも 2 つの別個のコンポーネントで構成されなければならない」に準拠する必要があります。 From the definition of the standard, the…

  • Clause 3 – How to understand the definition of “fixed appliance”

    fixed appliance: appliance that is intended to be used while fastened to a support or while secured in a specific location. The definition emphasizes fastening to a bracket or fixing in a specific position. Generally, we think that this kind of fixation requires some installation actions and some fixing devices, these devices can be fixed…

  • Clause 3 – How to understand the definition of “non-self-resetting thermal cut-out”

    non-self-resetting-thermal cut-out: thermal cut-out that requires a manual operation for resetting, or replacement of a part, in order to restore the current.NOTE Manual operation includes disconnection of the appliance from the supply mains. The thermal cut-out is equipped with a temperature-sensitive component, typically a bimetallic strip or a thermistor, which reacts to heat. As the…

  • Clause 3 – How to understand the definition of “accessible part”

    accessible part: part or surface that can be touched by means of test probe B of IEC 61032, and if the part or surface is metal, any conductive part connected to it.NOTE Accessible non-metallic parts with conductive coatings are considered to be accessible metal parts. There are some parts or surfaces in the appliance that…