第 3 項 – 「沿面距離」の定義の理解方法

沿面距離: 2 つの導電性部品間、または導電性部品とアクセス可能な表面間の絶縁体表面に沿った最短距離。

電荷は空気中を指向性を持って伝播し、電流を形成します。これがクリアランスの意味です。完全に絶縁された材料はないため、実際には電荷は絶縁材料自体を通って伝播する可能性もあります。通常のA4印刷用紙の両面と厚さ2mmのトレッドゴム材の両面に電位の異なる2つの電極を印加した場合、2つの電極間に形成される電流の差は非常に大きくなります。電荷は、絶縁材料の表面に沿って方向性を持って伝播することもあります。異なる材料の表面における電荷伝播の影響も異なります。絶縁材の表面に他の物質(汚染物質)が付着している場合、電荷伝播の影響も異なります。電荷が絶縁材料の表面に沿って伝播して感電を引き起こすのを防ぐために、沿面距離の定義と要件が作成されます。絶縁材料本体を通した電荷の伝播により、第 29 条の最初の段落に記載されている固体絶縁要件が生成されます。第 29.2 条には、沿面距離の要件が示されています。



沿面距離の定義は IEC 60664-1:2020 規格に基づいています。沿面距離を説明する必要があるため、IEC 60664-1:2020規格の図4から図14までの図を示す必要があります。ここで、読者は「X mm」をどのように決定するかを慎重に検討する必要があります。沿面距離を形成する経路上に溝がある場合、橋溝の状況が発生します。私は個人的に、ブリッジの主な原因は溝への汚染物質の堆積であると考えています。これらの汚染物質は主に粉塵であり、湿った粉塵は導電性が高くなります。したがって、規格の原文をコピーすると、次の 3 つの前提条件があります。
– 溝を横切る距離が指定された幅 X (表 1 を参照) より小さい場合、沿面距離は溝を直接横切って測定され、溝の輪郭は考慮されません (図 4 を参照)
– 溝を横切る距離が指定された幅 X 以上である場合 (表 1 を参照)、沿面距離は溝の輪郭に沿って測定されます (図 5 を参照)。
– 凹部は、指定された幅 X に等しい長さを持ち、最も不利な位置に配置された絶縁リンクで橋渡しされていると想定されます (図 6 を参照)。
– 相互に異なる位置を想定できる部品間で測定される隙間と沿面距離は、これらの部品が最も不利な位置にあるときに測定されます。


図 4 – 溝の向こう側

条件: 検討中のパスには、幅 X mm 未満の任意の深さの平行または収束側面の溝が含まれています。
ルール: クリアランスと沿面距離は、図に示すように溝を直接横切って測定されます。


クリアランス


沿面距離


図5​​ 溝の輪郭

条件: 検討中のパスに、任意の深さで X mm 以上の平行な側面の溝が含まれている
ルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。


クリアランス


沿面距離


図 6 – 角度のある溝の輪郭

条件: 対象のパスに幅 X mm を超える V 字型の溝が含まれています。
ルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従いますが、溝の底は X mm の絶縁リンクで覆われています。


クリアランス


沿面距離


図7 リブの輪郭

条件:検討中のパスにリブが含まれている
ルール: クリアランスとは、リブ上部を通る最短の直接空気経路です。沿面経路はリブの輪郭に従います。


クリアランス


沿面距離


図 8 – X 未満の溝を持つアンセメント接合

条件: 検討中のパスには、両側に X mm 未満の幅の溝があるセメントなしジョイントが含まれています。
ルール: 空間距離と沿面距離は、「見通し線」の距離を示します。


クリアランス


沿面距離


図9 – X以上の溝を持つアンセメント継手

条件: 検討中のパスには、両側に X mm 以上の幅の溝があるアンセメント接合部が含まれています。
ルール:クリアランスとは「見通し」の距離です。沿面経路は溝の輪郭に従います。


クリアランス


沿面距離


図 10 – 片側に X より小さい溝があるアンセメント接合部

条件: 検討中のパスには、片側に幅 X mm 未満の溝があり、もう一方の側に幅 X mm 以上の溝があるアンセメント接合部が含まれています。
ルール: 図に示すように、クリアランスおよび沿面パス領域。


クリアランス


沿面距離


図 11 – アンセメント接合部の沿面距離とクリアランス

条件: アンセメント接合部の沿面距離が、接合部の沿面距離よりも小さい
バリアですが、バリア上部のクリアランスを超えています。
ルール: クリアランスとは、バリア上部を通る最短の直接空気経路です。


クリアランス


沿面距離


図 12 – X を超えるねじの頭までの沿面距離とクリアランス

ネジの頭と凹部の壁の間の隙間は考慮に入れるのに十分な広さ


クリアランス


沿面距離


図 13 – X 未満のネジ頭までの沿面距離とクリアランス

ネジの頭と凹部の壁の間の隙間が狭すぎて考慮できません。
沿面距離の測定は、距離が X mm に等しい場合のネジの頭から壁までの距離です。


クリアランス


沿面距離


図 14 – 導電性浮遊部の沿面距離と空間距離

C:導電性浮遊部
クリアランスは距離です = d + D
沿面距離も= d + D
注: の最小クリアランスについては、表 F.2 を参照してください dD.


クリアランス


沿面距離

次の例で指定する寸法 X には、汚染度に応じて次の最小値があります。
汚染度寸法Xの最小値
10.25mm
21.0mm
31.5mm
表1 溝の寸法

関連するクリアランス要件が 3 mm 未満の場合、最小寸法 X は関連するクリアランスの 1/3 に削減される可能性があります。
「X mm」の値を計算する方法を例として説明します。 5 mm のパスを測定し、そのパスに溝がある場合、上の表に基づいて汚染度 3 を仮定すると、X = 1.5 mm になります (汚染度を考慮)。測定する距離が 2.7 mm の場合、X = 2.7 mm/3 = 0.9 mm となります。



例 11 については個別に説明しましょう。上の図は IEC 60664-1:2007 バージョンからのものです。読者が図を注意深く確認すると、d と gt;X の場合にのみ、クリアランスが距離 = d + D となり、それ以外の場合はクリアランスが D であることがわかります。D と d の計算規則は同じです。ただし、実際には、これは間違いであり、規格が誤った要件を与えていることを指摘する必要があります。この規格の IEC 60664-1:2020 バージョンでは、このエラーが修正されています。

沿面距離の規則は空間距離の規則よりもはるかに複雑であり、第 29 条の要件もより複雑です。沿面距離については、読者が上記の情報を理解できれば、IEC 60335 シリーズの規格を実装するには十分だと思います。条項 29.2 の沿面距離に関する要件は、条項 29.2 を導入する際に詳細に導入されます。

Similar Posts

  • 第 3 項 – 「安全絶縁変圧器」の定義の理解方法

    安全絶縁変圧器:安全超低電圧で機器または回路に供給することを目的とした、少なくとも二重絶縁または強化絶縁と同等の絶縁によって入力巻線が出力巻線から電気的に分離された変圧器 ここで言う変圧器は、機器や回路に電力を供給するために使用されます。最も一般的な変圧器は回路に電力を供給し、いくつかの変圧器は電化製品に電力を供給します。ここで重要となるのは入力巻線と出力巻線の絶縁対策であり、二重絶縁もしくは強化絶縁タイプ、または同等の絶縁が必要となります。この要件は、一次巻線と二次巻線が十分な絶縁を有することを保証することです。絶縁が十分であれば、変圧器の一次巻線と二次巻線間の絶縁は比較的安全です。二重の保護予防策。 スイッチの電源基板に使用される最初の種類のトランス。このタイプの変圧器は、同じ磁気コア上に一次巻線と二次巻線を重ね合わせます。したがって、一次側と二次側の間の沿面距離と電気的空間を確保するために、巻線を上下の端面に配置することはできません。以下の図に示すように、巻線は上下の端面から一定の距離にある必要があります。 安全絶縁トランスの全体図 安全絶縁トランスの全体図 The other is a drawer-type linear transformer, as shown below:

  • 第3項 「定格電流」の定義の見方

    定格電流: メーカーによってアプライアンスに割り当てられた電流。注: アプライアンスに電流が割り当てられていない場合、定格電流は次のようになります– 暖房器具の場合、定格入力電力と定格電圧から計算された電流; – 電動器具および複合器具の場合、器具が定格電圧で供給され、通常の動作で動作したときに測定される電流 この条項の最初の注意事項である暖房器具は、加熱用の電気発熱体のみを使用するため、この発熱体は基本的に純粋な抵抗負荷であるため、電流は入力電力を割ったものに等しいため、数学的計算方法に直接従うことができます。定格電圧による(P = U/I)。 2番目の注意点は、この製品は純粋な抵抗負荷ではないため、式によると、P = U/Iの計算では正確な結果が得られず、電流値を取得するテストのみが必要です。一般的には一部電動器具 冷蔵庫などの定格ラベルには定格電流と表示されています。ほとんどのエアコンの定格ラベルには、定格入力と定格電流の両方が記載されています。 冷蔵庫の定格ラベル エアコンの定格ラベル rating label for air conditioner

  • 第3項 「タイプX、タイプY、タイプZのアタッチメント」の定義の見方

    接続のタイプはアプライアンスのメーカーによって定義されます。一般に、これをタイプ X として定義することはまれです。これは、メーカーに不必要なリスクをもたらすことになるためです。一般にタイプ Y として定義されます。もちろん、電源コードが鋳造されている場合は、一般にタイプ Z として定義されます。次の図は、3 種類のアタッチメントの接続図を示しています。 タイプ X アタッチメント: 電源コードの接続は、アプライアンス内の特別に用意されたスペースで完了します。したがって、電源コードを交換する際には、端子台と内部配線以外の部分には触れません。電源コードを固定するネジは、通常の十字ネジまたは皿ネジです。電源コードの交換は管理可能な範囲内で行ってください。一般ユーザーが交換する電源コードは比較的シンプルで操作しやすいです。 タイプ Z アタッチメント、3.2.6 の説明と例を参照。 type Z attachment, see the explanation and examples in 3.2.6.

  • IEC 60335-1の表17および表18

    表 17 と表 18 には、「動作電圧と gt; 10 V および ≤ 630 V については、電圧が表に指定されていない場合、沿面距離の値は補間によって求められる場合があります。」という注記があります。 動作電圧が表に記載されている値ではない場合、通常は制限値を取得するために計算する必要があります。便宜上、Excel テーブルを用意しました。テスターはテーブルを直接クエリして、対応する制限値を取得できます。 ダウンロード

  • Clause 3 – How to understand the definition of “thermal link”

    thermal link: thermal cut-out which operates only once and requires partial or complete replacement It is a temperature sensing device, but it can only be operated once, when the temperature is higher than its set value, it will disconnect, and after disconnection, the current can not pass through, so as to play the role of…

  • Clause 3 – How to understand the definition of “thermostat”

    thermostat: temperature-sensing device, the operating temperature of which may be either fixed or adjustable and which during normal operation keeps the temperature of the controlled part between certain limits by automatically opening and closing a circuit. The thermostat itself does not control the temperature, the thermostat senses the temperature and controls the temperature by switching…