Clause 3 – How to understand the definition of “heating appliance”

heating appliance: appliance incorporating heating elements but without any motor.

Before introducing this definition, we need to briefly introduce the electric heating elements commonly used in household electrical appliances.

PTC heating element: PTC (Positive Temperature Coefficient) heating elements are widely used for various heating applications because of their self-regulating properties and safety features. Here are the key characteristics:
1. Self-Regulating Function
Automatic temperature control: As the temperature increases, the electrical resistance of the PTC material increases, which reduces the current flowing through it. This effectively limits the temperature rise, making the element self-regulating.
No external control required: PTC heaters can automatically limit their maximum operating temperature, so there is no need for complex control systems.
2. Temperature Coefficient
Positive Temperature Coefficient: The resistance of the PTC element increases as the temperature rises. This characteristic is different from typical conductors, where resistance remains relatively constant.
Non-linear resistance curve: There is a sharp increase in resistance after a certain temperature, known as the “Curie temperature,” which makes the element stop drawing more current and maintain its set point.
3. Safety
Overheating protection: Due to the self-regulating behavior, PTC heaters are less prone to overheating, making them inherently safer for many applications.
Fail-safe operation: If airflow is blocked or there’s insufficient heat dissipation, the element will not overheat dangerously but rather reduce its power output.
4. Durability and Longevity
Long lifespan: The absence of moving parts and the self-regulating property means PTC heating elements tend to last longer than traditional resistive heaters.
Low maintenance: Since there are no parts that wear out easily, PTC elements typically require minimal maintenance.
5. Energy Efficiency
Efficient energy usage: By adjusting the power consumption automatically based on the surrounding temperature, PTC heaters only draw the necessary amount of power, reducing wasted energy.
Faster heat-up times: PTC elements can heat up quickly to a stable temperature and maintain it efficiently.
6. Wide Range of Applications
Versatile: PTC heaters are used in a variety of industries and products, including space heaters, car seat heaters, defrost systems, and industrial heating equipment.
Compact: They are available in various forms, including ceramic, polymer, and metal components, making them suitable for small, portable applications.
7. Electrical Insulation
Excellent insulation properties: Many PTC materials provide good electrical insulation, reducing the risk of electrical faults and ensuring safe operation in environments where exposure to moisture or other conductive elements is possible.
8. Constant Temperature Maintenance
Stable operating temperature: Once the element reaches a specific temperature, it will stay close to that temperature without the need for external thermostats or controllers.
9. Design Flexibility
Custom shapes and sizes: PTC elements can be made in different shapes and sizes to suit specific applications, from small-scale heating pads to large-area heaters.

These characteristics make PTC heating elements particularly advantageous for use in products requiring safe, efficient, and low-maintenance heating solutions.

PTC heating elements are typically used in HVAC products.

Electric heating tubes, also known as electric heating elements or tubular heaters, are devices used for heating through electrical resistance. They consist of a resistive wire encased in a metal tube and are commonly used in industrial and household heating applications. Here are the key characteristics:
1. High Efficiency in Heat Transfer
Direct heat transfer: Electric heating tubes convert almost all the electrical energy into heat with minimal energy loss. The heat is transferred directly to the medium (air, water, oil, etc.) that needs to be heated.
Uniform heating: The heat is evenly distributed across the surface of the heating element, leading to uniform temperature control.
2. Durable Construction
Robust metal tube: The heating wire is encased in a metallic sheath, usually made from materials like stainless steel, Incoloy, or copper, which are corrosion-resistant and capable of withstanding high temperatures.
Long lifespan: Due to their strong construction and efficient heat dissipation, electric heating tubes are known for their long operational life.
3. Insulation Material
Magnesium oxide (MgO) powder: The heating wire inside the tube is insulated by compacted magnesium oxide powder, which offers excellent thermal conductivity while providing electrical insulation to prevent short circuits.
4. Fast Heating Response
Quick temperature rise: Electric heating tubes can reach their operating temperatures quickly due to the efficient resistance heating of the wire inside. This allows them to deliver heat rapidly to the medium.
5. Versatility in Applications
Multiple forms and shapes: Electric heating tubes can be manufactured in various shapes, such as straight, U-shaped, or coiled, to meet the requirements of different applications.
Wide range of heating applications: They are used in industrial ovens, water heaters, oil heaters, boilers, kitchen appliances, air conditioners, and other heating systems.
6. Wide Temperature Range
High-temperature operation: Depending on the material used, electric heating tubes can operate at temperatures up to 800°C (1472°F) or more.
Stable temperature control: These heaters provide consistent heat over time, which makes them suitable for both low and high-temperature applications.
7. Easy Installation and Maintenance
Simple to install: They can be easily integrated into heating systems with minimal space requirements. The installation process is straightforward, and they can be replaced without major system overhauls.
Low maintenance: Electric heating tubes have no moving parts, which reduces wear and tear, resulting in minimal maintenance needs.
8. Energy Efficiency
Low energy loss: Since electric heating tubes convert nearly all electrical energy into heat, they are highly energy-efficient.
Low operating cost: Their efficiency translates into lower operating costs over time, especially when compared to traditional heating methods like gas or combustion heaters.
9. Corrosion and Environmental Resistance
Corrosion resistance: The metallic sheath of the heating tube, often made of stainless steel or Incoloy, makes it resistant to corrosion, especially in applications involving liquids, such as water heaters or oil baths.
Resistant to harsh environments: Electric heating tubes can be used in environments exposed to chemicals, humidity, and pressure, depending on the materials used in their construction.
10. Safety Features
Thermal insulation: The insulation materials inside the tube provide protection against electrical leakage and ensure safe operation.
Explosion-proof designs: In some applications, electric heating tubes can be designed with explosion-proof characteristics for use in hazardous environments.
11. Customizability
Custom wattage and voltage: Electric heating tubes can be designed to operate at different power levels (wattage) and voltage requirements, making them suitable for a variety of industrial and domestic needs.
Shape and size flexibility: The design flexibility allows manufacturers to tailor electric heating tubes for specific heating applications (like immersion heaters, cartridge heaters, or finned tubular heaters for air heating).
12. Applications
Domestic uses: Common in water heaters, ovens, toasters, dishwashers, and space heaters.
Industrial uses: Widely used in chemical processing, oil heating, HVAC systems, boilers, and industrial furnaces.
13. Cost-Effectiveness
Affordable production: Due to their relatively simple design and common materials, electric heating tubes are cost-effective compared to other advanced heating technologies.
Low operating cost: Their high energy efficiency means lower electricity consumption over time, making them economical for long-term operation.

These characteristics make electric heating tubes ideal for applications where reliable, efficient, and controlled heating is essential, both in industrial processes and household appliances.

This type of heating tube is used in a wide range of applications such as ovens, room heaters, kettles, etc.

Electric heating wire:
The spring-shaped electric heating wire in the electric furnace shown below, their material is usually ferrochrome-aluminum alloy: electric heating wire made of this material has the advantages of high resistivity, long life at high temperatures, light weight, and inexpensive. Especially suitable for use in the atmosphere containing sulfur and sulfide, it is the ideal heating material in industrial electric furnaces, household appliances, infrared heating devices. Iron-chromium-aluminum alloy can be used up to a maximum temperature of 1400 ℃, with excellent high-temperature oxidation resistance. However, the disadvantage of iron chrome aluminum alloy is the low high-temperature strength, with the use of temperature increases its plasticity increases, the components are easy to deform, not easy to bend and repair.
This heating material is used in many types of products, such as heated stoves for kitchens, room heaters, etc.

There are also some electric ceramic stoves and electric blankets that use carbon heating materials, which are characterized by fast heat generation, long heat radiation transmission distance, even heat generation and long life.
There are several kinds of heating materials as follows
Graphene: Graphene is a new type of two-dimensional carbon nanomaterials, with excellent thermal conductivity and electric heat conversion efficiency. Graphene electric blanket can rapidly generate heat and improve the warming and insulation effect.
Carbon nanotube film: This is a new type of flexible heating material, composed of hexagonally arranged carbon atoms forming a single layer to dozens of layers of coaxial tubes, with excellent electrical and thermal conductivity, long service life, belonging to the surface heat, heat uniformity.
Nickel-chromium alloy: nickel-chromium alloy electric heating wire main chemical composition of nickel and chromium, has a high electrical resistivity, good surface oxidation resistance, high thermal emissivity, corrosion resistance, resistance to vibration in the hot state, and has a high high-temperature strength, good processing performance and weldability. This material is made of electric heating wire high temperature strength than iron chromium aluminum alloy, high temperature use is not easy to deform, its structure is not easy to change, better plasticity, easy to repair. However, due to the use of scarcer nickel metal materials made of nickel-chromium alloy electric heating wire price is usually several times higher than the ferro-chromium aluminum alloy, and the use of lower temperatures than ferro-chromium aluminum alloy.
Using an electromagnetic coil as the heating element, the principle of electromagnetic induction is utilized to heat the metal material.
Far infrared heating is a newer heating method that directly heats the inside of food through the penetration and resonance principle of far infrared rays.
The heating methods and materials will not be introduced one by one, if necessary, you can check through the search engine.
According to the standard definition, a product with a heating element but without a motor is a heating appliance, because the product only has a heating element, so its function is generally used for heating, such as room heaters for heating air, kettles for heating water, ovens for heating food and so on.

A microwave oven, which heats water molecules in food by means of microwaves generated by a magnetron, is not a heating appliance, which is explicitly defined as a motor-operated appliance in clause 5.101 of the IEC 60335-2-25 standard.

Similar Posts

  • ข้อ 3 – จะเข้าใจคำจำกัดความของ “การกวาดล้าง” ได้อย่างไร

    พื้นผิวที่เข้าถึงได้การกวาดล้างเป็นแนวคิดที่สำคัญมาก เพื่อให้เข้าใจถึงการกวาดล้าง เราต้องพูดอีกครั้งว่าไม่มีสารใดเป็นฉนวนโดยสมบูรณ์ และอากาศก็สามารถนำไฟฟ้าได้เช่นกัน เมื่อแรงดันไฟฟ้าสูงมาก กระแสไฟฟ้าจะถูกนำผ่านอากาศ ฟ้าผ่าระหว่างเกิดพายุฝนฟ้าคะนองเป็นตัวอย่างทั่วไปของฟ้าผ่าที่ผ่านอากาศ แรงดันไฟฟ้าของฟ้าผ่าสูงมาก จึงสามารถทะลุผ่านอากาศส่วนที่ยาวมากได้ ทำให้อากาศส่วนนี้เป็นสื่อกระแสไฟฟ้า ในเครื่องใช้ไฟฟ้าในครัวเรือนถึงแม้แรงดันไฟฟ้าจะต่ำมาก แต่ก็มีอากาศอยู่ในผลิตภัณฑ์เป็นจำนวนมาก และกระแสไฟจะถูกนำผ่านอากาศด้วย เมื่อแรงดันไฟฟ้าเพิ่มขึ้น ระยะทางที่แรงดันไฟฟ้าอาจทะลุผ่านอากาศก็จะนานขึ้นเช่นกัน สิ่งนี้ทำให้เกิดแนวคิดเรื่องการกวาดล้าง สำหรับคำอธิบายโดยละเอียดเกี่ยวกับการกวาดล้าง โปรดดู IEC 60664-1 (การประสานงานของฉนวนสำหรับอุปกรณ์ภายในระบบไฟฟ้าแรงต่ำ – ส่วนที่ 1: หลักการ ข้อกำหนด และการทดสอบ)ฉันคิดว่ารูปภาพต่อไปนี้สามารถอธิบายเส้นทางการกวาดล้างทางไฟฟ้าได้ดี ช่องว่างอาจเกิดขึ้นระหว่างอิเล็กโทรดสองตัวที่มีแรงดันไฟฟ้าต่างกัน หรือระหว่างชิ้นส่วนที่มีไฟฟ้ากับมือของผู้ใช้ผลิตภัณฑ์ไฟฟ้า คุณเพียงแค่ต้องจินตนาการว่าอิเล็กโทรดทั้งสองในภาพด้านบนเป็นวัตถุอื่น เมื่อเราอธิบายฉนวนพื้นฐานและฉนวนตามการใช้งาน เราได้ให้ภาพถ่ายจริงบางส่วนเพื่ออธิบายตัวอย่างการกวาดล้างและการเคลื่อนตัว รูปที่ 11 – ตัวอย่างระยะห่างในมาตรฐาน IEC 60335-1 เป็นตัวอย่างง่ายๆ จากตัวเลขนี้ เราสามารถคิดถึงคุณลักษณะพื้นฐานของอุปกรณ์คลาส II โครงสร้างคลาส II อุปกรณ์คลาส I และการสร้างคลาส I คีย์ 1 ชิ้นส่วนโลหะที่ขุดขึ้นมาและเข้าถึงได้2 กล่องหุ้ม3 ชิ้นส่วนโลหะที่ต่อลงดินที่เข้าถึงได้4 ชิ้นส่วนโลหะที่ขุดขึ้นมาซึ่งเข้าถึงไม่ได้ส่วนที่มีไฟฟ้า L1…

  • ข้อ 3 – จะเข้าใจคำจำกัดความของ “ความต้านทานเชิงป้องกัน” ได้อย่างไร

    กรณีที่ 1: อิมพีแดนซ์ป้องกันทั้งสองเชื่อมต่อระหว่างขดลวดปฐมภูมิและขดลวดทุติยภูมิของหม้อแปลง T2 เส้นประในรูปด้านล่างแสดงถึงการแยกระหว่างส่วนแรงดันไฟฟ้าทำงาน 220-240V และส่วนแรงดันไฟฟ้าทำงานต่ำ (SELV)รูปด้านล่างคือแผนภาพวงจรของเครื่องกำเนิดไอออนลบ ตัวต้านทานสองตัวที่เลือกโดยสี่เหลี่ยมสีแดงนั้นเป็นอิมพีแดนซ์ในการป้องกันโดยทั่วไป ในภาพด้านล่าง มีอิมพีแดนซ์ป้องกัน CY1 และ CY2 หรือไม่ จากคำจำกัดความของมาตรฐาน อิมพีแดนซ์ป้องกันถูกใช้ในโครงสร้างประเภท II ที่มีการต่อสายดิน หากการต่อสายดินที่นี่ถูกกำหนดให้เป็นการต่อสายดินการป้องกัน เห็นได้ชัดว่า CY1 และ CY2 ไม่สามารถกำหนดเป็นอิมพีแดนซ์การป้องกันได้ เนื่องจากอิมพีแดนซ์การป้องกันถูกใช้ในการก่อสร้างคลาส II และนี่คือการก่อสร้างคลาส I ถ้าการต่อสายดินและ nbsp;ในที่นี้ถูกกำหนดให้เป็นการต่อสายดินเชิงฟังก์ชัน แสดงว่ามีปัญหาสองประการ ประการแรก นี่คือโครงสร้างคลาส I ดังนั้น CY1 และ CY2 จึงไม่สามารถกำหนดเป็นอิมพีแดนซ์การป้องกันได้ ประการที่สอง หากเป็นโครงสร้างคลาส II ก็สามารถกำหนด CY1 และ CY2 เป็นอิมพีแดนซ์การป้องกันได้ จากนั้นจึงจำเป็นต้องปฏิบัติตามข้อกำหนดที่เกี่ยวข้องของอิมพีแดนซ์การป้องกัน ความเห็นส่วนตัวของฉันคือ CY1 และ CY2 ไม่ใช่อิมพีแดนซ์ป้องกัน และเราสามารถถือเป็นฉนวนพื้นฐานได้โดยตรง…

  • Clause 3 – How to understand the definition of “built-in appliance”

    built-in appliance: fixed appliance intended to be installed in a cabinet, in a prepared recess in a wall or in a similar location. Here, because the appliance must be installed in a reserved position (usually a cubic space with only one side open), it is a fixed installation and can be regarded as a fixed…

  • ข้อ 3 – วิธีทำความเข้าใจคำจำกัดความของ “กระแสไฟฟ้าที่ได้รับการจัดอันดับ”

    หมายเหตุ หากไม่มีการกำหนดกระแสไฟฟ้าให้กับเครื่องใช้ไฟฟ้า กระแสไฟที่กำหนดจะเป็น– สำหรับเครื่องทำความร้อน กระแสไฟฟ้าคำนวณจากกำลังไฟเข้าที่กำหนดและแรงดันไฟฟ้าที่กำหนด– สำหรับเครื่องใช้ไฟฟ้าที่ทำงานด้วยมอเตอร์และเครื่องใช้ไฟฟ้าแบบรวม กระแสไฟฟ้าที่วัดได้เมื่อจ่ายเครื่องใช้ไฟฟ้าด้วยแรงดันไฟฟ้าที่กำหนดและทำงานภายใต้การทำงานปกติ สิ่งนี้สอดคล้องกับกำลังไฟฟ้าเข้าที่กำหนด และถูกกำหนดในลักษณะเดียวกับกำลังไฟฟ้าเข้าที่กำหนด หมายเหตุแรกของข้อนี้ เครื่องทำความร้อน เนื่องจากมีเพียงองค์ประกอบความร้อนไฟฟ้าเพื่อให้ความร้อนเท่านั้น องค์ประกอบความร้อนนี้โดยพื้นฐานแล้วจะมีโหลดความต้านทานเพียงอย่างเดียว ดังนั้นคุณจึงสามารถปฏิบัติตามวิธีการคำนวณทางคณิตศาสตร์ได้โดยตรง เนื่องจากกระแสจะเท่ากับกำลังไฟฟ้าเข้าที่หาร โดยแรงดันไฟฟ้าที่กำหนด (P = U/I) หมายเหตุประการที่สอง เนื่องจากผลิตภัณฑ์ไม่ใช่โหลดที่มีความต้านทานเพียงอย่างเดียว ดังนั้นตามสูตรการคำนวณ P = U/I จึงไม่ได้ให้ผลลัพธ์ที่ถูกต้อง มีเพียงการทดสอบเพื่อให้ได้ค่าปัจจุบันเท่านั้นโดยทั่วไปมีบ้างเครื่องใช้ไฟฟ้าที่ทำงานด้วยมอเตอร์ มีป้ายระบุพิกัดกระแสในป้ายพิกัด เช่น ตู้เย็น เครื่องปรับอากาศส่วนใหญ่จะมีทั้งกำลังไฟเข้าพิกัดและกระแสไฟพิกัดบนป้ายพิกัด ฉลากจัดอันดับสำหรับตู้เย็น ป้ายเรตติ้งเครื่องปรับอากาศ rating label for air conditioner

  • ข้อ 3 – จะเข้าใจคำจำกัดความของ “สายเชื่อมต่อโครงข่าย” ได้อย่างไร

    หมายเหตุ 1: ในเครื่องใช้ไฟฟ้าที่ใช้แบตเตอรี่ ถ้าใส่แบตเตอรี่ไว้ในกล่องแยกต่างหาก สายไฟอ่อนหรือสายอ่อนที่ต่อกล่องกับเครื่องใช้ไฟฟ้าจะถือเป็นสายเชื่อมต่อโครงข่ายสายเชื่อมต่อไม่ได้เชื่อมต่อกับแหล่งจ่ายไฟหลัก ตั้งอยู่ระหว่างสองส่วนของเครื่องใช้ไฟฟ้า สายไฟสามารถนำพลังงานไฟฟ้าจากส่วนหนึ่งไปยังอีกส่วนหนึ่งได้ แนวคิดของสายเชื่อมต่อโครงข่ายมีการกำหนดไว้ที่นี่เพื่อลดอันตรายที่เกิดจากสายเชื่อมต่อโครงข่าย มาตรฐาน 25.23 และ 25.24 กำหนดข้อกำหนดสำหรับสายเชื่อมต่อโครงข่าย จากมุมมองของข้อกำหนดมาตรฐาน มาตรฐานจะพิจารณาถึงสายไฟภายนอกของเครื่องใช้ไฟฟ้าเป็นหลัก การดึงที่อาจเกิดขึ้นระหว่างการใช้งาน และสภาวะการใช้งานอื่นที่คล้ายคลึงกันซึ่งสายไฟอาจทนได้ ดังนั้นสายไฟที่เข้าถึงได้จากภายนอกส่วนใหญ่นอกเหนือจากสายไฟจึงถือเป็นสายเชื่อมต่อโครงข่าย หมายเหตุ 1 เป็นตัวอย่างทั่วไป ผลิตภัณฑ์ที่แสดงในภาพด้านล่างคือพัดลมที่มีฟังก์ชันการทำให้เป็นละออง (เป่าลมออกมาในรูปของหมอก) สายเชื่อมต่อระหว่างส่วนหัวพัดลมด้านบนและส่วนถังน้ำสีขาวด้านล่างถือได้ว่าเป็นสายเชื่อมต่อ ดังแสดงในรูปด้านล่าง พัดลมไอน้ำแบบตั้งพื้นมีโครงสร้างที่แตกต่างจากพัดลมไอน้ำแบบติดผนังดังแสดงในรูปด้านบน แต่มีฟังก์ชั่นเดียวกัน พัดลมไอน้ำแบบตั้งพื้นเป็นโครงสร้างที่สำคัญ แต่มีสายไฟด้านนอกเชื่อมต่อหัวพัดลมกับถังเก็บน้ำด้านล่าง (สายไฟจะผ่านแกนรองรับตรงกลาง) สำหรับการเชื่อมต่อประเภทนี้ผู้เขียนเชื่อว่าเป็นสายเชื่อมต่อโครงข่ายด้วย ดังแสดงในรูปด้านล่าง นี่คือเส้นนำทั่วไประหว่างแผงวงจรแสดงผลและแผงวงจรควบคุมหลักของเครื่องปรับอากาศแบบแยกส่วนภายในอาคาร แม้ว่าสัมผัสสายได้โดยการเปิดฝาครอบด้านบนด้วยตนเอง แต่สายจะอยู่ด้านในเครื่องระหว่างการใช้งานปกติ จึงไม่ถือว่าเป็นสายเชื่อมต่อระหว่างกัน อย่างไรก็ตาม ผู้นำยังคงต้องเป็นไปตามข้อกำหนดของข้อ 22.8. นี่คือกรณีที่เป็นที่ถกเถียงกันมากขึ้น ซึ่งก็คือสายไฟภายในช่องคอมเพรสเซอร์ที่ด้านหลังของตู้เย็น สายไฟในวงกลมสีแดงในรูปด้านล่างถือเป็นสายเชื่อมต่อโดยองค์กรทดสอบหรือห้องปฏิบัติการบุคคลที่สามส่วนใหญ่ ความเห็นส่วนตัวของฉันคือสายไฟในช่องคอมเพรสเซอร์ตู้เย็นไม่ใช่สายเชื่อมต่อ เราสามารถอนุมานเจตนาของมาตรฐานได้จากข้อกำหนด 25.23 และ 25.24 มาตรฐานกำหนดให้สายเชื่อมต่อต้องเป็นไปตามข้อกำหนดของสายไฟ สายไฟสามารถดึงออกได้ จึงต้องทดสอบตามข้อ 25.15 สายไฟมีลักษณะพิเศษคืออยู่ภายนอกตัวเครื่องและสามารถสัมผัสและดึงได้ สายไฟตู้เย็นที่เรากำลังพูดถึงที่นี่ไม่น่าจะแตะต้องได้ และโดยพื้นฐานแล้วจะไม่ถูกดึง เครื่องใช้ไฟฟ้าได้รับมาโดยชุดสายไฟและประกอบด้วยส่วน…

  • Clause 3 – How to understand the definition of “accessible part”

    accessible part: part or surface that can be touched by means of test probe B of IEC 61032, and if the part or surface is metal, any conductive part connected to it.NOTE Accessible non-metallic parts with conductive coatings are considered to be accessible metal parts. There are some parts or surfaces in the appliance that…