Clause 3 – How to understand the definition of “non-self-resetting thermal cut-out”

non-self-resetting-thermal cut-out: thermal cut-out that requires a manual operation for resetting, or replacement of a part, in order to restore the current.
NOTE Manual operation includes disconnection of the appliance from the supply mains.

The thermal cut-out is equipped with a temperature-sensitive component, typically a bimetallic strip or a thermistor, which reacts to heat. As the temperature of the appliance or circuit increases, the bimetallic strip bends or the resistance of the thermistor changes. When the heat decreases and the temperature drops, the bimetallic strip will deform, reconnecting the circuit and completing the self-resetting action. The non- self-resetting thermal cut-out we are discussing here can be reset, but it cannot perform the reset action by itself.
For example, a non-self-resetting thermal cut-out that needs to be reset manually requires pressing a button. I won’t explain how this works here, you can google it yourself.

Another type of thermal cut-out is the one that needs to be disconnected from the power/main supply in order to complete the resetting action. Typical non-self-resetting thermal cut-outs(voltage maintained non-self-resetting thermal cut-out) are used in motors and are shown in the figure below:

Its working principle can be explained by the figure below. When the bimetallic strip disconnects the circuit, since the PTC is connected to the circuit and is generating heat still, the bimetallic strip is still in a relatively hot state and cannot be reset. When the power is disconnected (for example, the plug is unplugged), the PTC does not generate heat and can be reset after a period of time.

Its internal structure is shown below:

Another voltage maintained non-self-resetting thermal cut-out are used in room heater or hair dryer are shown in the figure below:

Similar Posts

  • How are the creepage distances and electrical clearances of PTC heating element surfaces determined?

    We are discussing here the second structure of the PTC heating element, PTC heating element structure please refer to the explanation of its definition. How is the creepage distance of the functional insulation at the location of the red circle in Figure 1 determined? We all know that NOTE 1 of TABLE 18 section has…

  • 第 3 項 – 「クリアランス」の定義の理解方法

    クリアランス: 2 つの導電性部品間、または導電性部品と導電性部品間の空気中の最短距離アクセス可能な表面。 クリアランスは非常に重要な概念です。クリアランスを理解するには、完全に絶縁された物質はなく、空気も電気を通すことができるということをもう一度言う必要があります。電圧が非常に高い場合、電流は空気中に伝導します。雷雨時の落雷は、雷が空気中を伝導する典型的な例です。雷の電圧は非常に高いため、空気の非常に長い部分を突き破り、空気のこの部分が導電性になります。家電製品では、電圧は非常に低いですが、製品中には空気が多く含まれており、空気中にも電流が流れます。電圧が増加すると、電圧が空気を突き抜ける距離も長くなります。これにより、クリアランスの概念が生まれます。クリアランスの詳細な説明については、IEC 60664-1 (低電圧システム内の機器の絶縁調整 – パート 1: 原則、要件、およびテスト) を参照してください。 次の写真は電気的除去の経路をよく説明していると思います。 電圧の異なる2つの電極間や、充電部と電気製品使用者の手の間に隙間が生じる場合があります。上の写真の 2 つの電極を他の物体として想像するだけで済みます。 キー アクセス可能な発掘された金属部品 1 つ 2筐体3 接地されている金属部分4 出土した接近不可能な金属部分活電部 L1 と L2 は互いに分離されており、一部は開口部を備えたプラスチックの筐体で囲まれ、一部は空気に囲まれ、固体絶縁体と接触しています。構造内部にはアクセスできない金属が組み込まれています。金属カバーが 2 つあり、そのうちの 1 つはアースされています。絶縁クリアランスの種類基礎絶縁L1A L1D L2F 機能性絶縁体L1L2 補助絶縁DE FG 強化絶縁 L1K L1J L2I L1C 注記隙間 L1D または L2F が強化絶縁の隙間要件を満たしている場合、補助絶縁の隙間 DE または FG は測定されません。 L1CNOTE If the clearances L1D or…

  • 第3項 「相互接続コード」の定義の見方

    相互接続コード࿱アプライアンスの 2 つの部分の間にある外部のフレキシブル コードで、主電源への接続以外の目的で完全なアプライアンスの一部として提供されます接続コードが主電源に接続されていない。これらはアプライアンスの 2 つの部分の間に配置されます。コードは電気エネルギーをある部分から別の部分に伝導できます。相互接続コードの概念は、相互接続コードによって引き起こされる危険を軽減するためにここで定義されます。規格 25.23 および 25.24 では、相互接続コードの要件が規定されています。標準要件の観点から、この規格では主に、機器の外部コード、使用中に発生する可能性のある引っ張り、および電源コードが耐える可能性のあるその他の同様の使用条件が考慮されています。したがって、電源コード以外の外部からアクセス可能なコードのほとんどは相互接続コードとみなすことができます。注1は代表的な例です。 床置き型ミストファンは下図のように、上図の壁掛け型ミストファンとは構造が異なりますが、機能は同じです。床置き型ミストファンは一体構造ですが、ファンヘッドと下の水タンクを繋ぐコードが外側にあります(コードは真ん中の支柱を通します)。この種の接続については、相互接続コードでもあると著者は考えています。 下図に示すように、分割型壁掛け型エアコン室内機の表示基板と主制御基板間の一般的なリード線です。トップカバーを手で開けばリード線に触れることができますが、通常の使用中はリード線が機器の内部にあるため、相互接続コードとはみなされません。ただし、リードは依然として第 22.8 条の要件を満たす必要があります。 アプライアンスはコード セットによって供給され、パーツ A とパーツ B で構成されます。パーツ B は手持ち式で、相互接続コードによってパーツ A に接続されます。この情報は CTL 決定 OD-5002-F3:2021 に基づいています。 As shown in the figure below, a floor standing mist fan has a different structure from the wall mount mist fan shown in the figure above, but…

  • 第3項「機能絶縁」の定義の見方

    機能的絶縁: 電位の異なる導電性部分間の絶縁であり、機器が適切に機能するためにのみ必要です。 下の図は典型的な機能絶縁の図です。PCB の銅レール層の図に示されているように、ラベルの茶色の部分は電源活線 (電流ヒューズ間に接続されている 2 つの茶色の位置)、青色の部分です。接続は電力線の中性線であり、活線であり、中性線には 2 つの線の間に電圧差があるため、選択した銅線レールの青色の部分と選択した銅線レールの茶色の部分の間の最短距離になります。レール、つまり機能絶縁体です。実際、通常の動作では、下の写真の回路基板、銅レール上の電圧は多くの場所で同じではないため、機能絶縁の形成により、読者は動作電圧によって独自の回路分析を行うことができます。各部分。 AC 非同期モーターの一般的な巻線接続図は次の図のようになります。図のコンデンサが動作しているとき、コンデンサの両端の電圧は通常、製品の定格電圧よりも高くなります。たとえば、定格電圧が 220V の場合、動作中にマルチメータで測定されるコンデンサの両端の電圧は通常 300V を超えます。このとき、コンデンサの両端間の機能絶縁を評価する場合、300V以上の使用電圧を基準に評価する必要がありますが、実際にはコンデンサ自体の機能絶縁は一般的には可能ではありません。コンデンサの端子がコンデンサのケース内に封入されているため測定されます。測定できる箇所はコンデンサの2本のリード線の端子台です。 下図に示すように、端子台には左側に活線が接続され、右側に中性線が接続されています。赤い線の位置は機能絶縁体の沿面距離です(クリアランスもここで決定できます)。 下の図に示されているキャリパーの測定値は、PCB 上のアダプターの入力のライブ銅線と中性銅線の間の機能絶縁を表しています。 As shown in the figure below, the terminal block has the live wire connected on the left and the neutral wire connected on the right. The position of the red line is the creepage distance of the…

  • Clause 3 – How to understand the definition of “portable appliance”

    portable appliance: appliance that is intended to be moved while in operation or an appliance, other than a fixed appliance, having a mass less than 18 kg. This item is relatively easy to understand. Products that are less than 18kg are relatively light, so they are easy to move during operation, including humidifiers, fans, air…